773 research outputs found

    Regional Tissue Oxygen Extraction and Severity of Anemia in Very Low Birth Weight Neonates: A Pilot NIRS Analysis

    Get PDF
    Objective: Anemia causes blood flow redistribution and altered tissue metabolic behavior to sustain homeostatic oxygen consumption. We hypothesized that anemia severity would correlate with increased regional fractional tissue oxygen extraction among premature neonates. Study Design: Regional oxygen extraction was calculated using pulse oximetry and near-infrared spectroscopy data among neonates Results: Twenty-seven neonates with gestational age 27 ± 2 weeks and birth weight 966 ± 181 g underwent 116 hematocrit determinations. Cerebral and flank oxygen extraction inversely correlated with hematocrit (cerebral r = −0.527, p = 0.005; flank r = −0.485, p = 0.01). Increased cerebral oxygen extraction was observed for the lowest three hematocrit quartiles (Q1 0.26 ± 0.08, p = 0.004; Q2 0.24 ± 0.09, p = 0.01; Q3 0.25 ± 0.09, p = 0.03; all compared with Q4 0.18 ± 0.10). Increased flank oxygen extraction occurred for the lowest two quartiles (Q1 0.36 ± 0.12, p \u3c 0.001; Q2 0.35 ± 0.11, p \u3c 0.001; compared with Q4 0.22 ± 0.13). Splanchnic oxygen extraction demonstrated no similar correlations. Conclusion: Increases in tissue oxygen extraction may indicate early pathophysiologic responses to nascent anemia in premature neonates

    First Nustar Observations Of Mrk 501 Within A Radio To Tev Multi-Instrument Campaign

    Get PDF
    We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsähovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission

    Sustainable growth in complex networks

    Full text link
    Based on the empirical analysis of the dependency network in 18 Java projects, we develop a novel model of network growth which considers both: an attachment mechanism and the addition of new nodes with a heterogeneous distribution of their initial degree, k0k_0. Empirically we find that the cumulative degree distributions of initial degrees and of the final network, follow power-law behaviors: P(k0)k01αP(k_{0}) \propto k_{0}^{1-\alpha}, and P(k)k1γP(k)\propto k^{1-\gamma}, respectively. For the total number of links as a function of the network size, we find empirically K(N)NβK(N)\propto N^{\beta}, where β\beta is (at the beginning of the network evolution) between 1.25 and 2, while converging to 1\sim 1 for large NN. This indicates a transition from a growth regime with increasing network density towards a sustainable regime, which revents a collapse because of ever increasing dependencies. Our theoretical framework is able to predict relations between the exponents α\alpha, β\beta, γ\gamma, which also link issues of software engineering and developer activity. These relations are verified by means of computer simulations and empirical investigations. They indicate that the growth of real Open Source Software networks occurs on the edge between two regimes, which are either dominated by the initial degree distribution of added nodes, or by the preferential attachment mechanism. Hence, the heterogeneous degree distribution of newly added nodes, found empirically, is essential to describe the laws of sustainable growth in networks.Comment: 5 pages, 2 figures, 1 tabl
    corecore