5 research outputs found

    Smart Maritime Sea Map to Green Shipping

    Get PDF
    This reports sums up the research on green shipping from the SFI Smart Maritime programme and associated projects [↗]. The report presents the essence of research at NTNU and SINTEF Ocean to inspire and advise ship owners, policy makers and stakeholders. This report was written in 2022 based on research made and published in the period 2015-2022. The report has been updated in 2023 with the most recent developments on rules and regulations, political developments and findings from IPCC. The section on alternative fuels has been revised.publishedVersio

    Reduction of maritime GHG emissions and the potential role of E-fuels

    No full text
    Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050, to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro, wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector, these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel, E-LNG, or E-Methanol. We evaluate emissions, energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection, to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity

    Reduction of maritime GHG emissions and the potential role of E-fuels

    Get PDF
    Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050, to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro, wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector, these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel, E-LNG, or E-Methanol. We evaluate emissions, energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection, to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity

    Reduction of maritime GHG emissions and the potential role of E-fuels

    Get PDF
    Maritime transport accounts for around 3% of global anthropogenic Greenhouse gas (GHG) emissions (Well-to-Wake) and these emissions must be reduced with at least 50% in absolute values by 2050, to contribute to the ambitions of the Paris agreement (2015). Zero carbon fuels made from renewable sources (hydro, wind or solar) are by many seen as the most promising option to deliver the desired GHG reductions. For the maritime sector, these fuels come in two forms: First as E-Hydrogen or E-Ammonia; Second as Hydrocarbon E-fuels in the form of E-Diesel, E-LNG, or E-Methanol. We evaluate emissions, energy use and cost for E-fuels and find that the most robust path to these fuels is through dual-fuel engines and systems to ensure flexibility in fuel selection, to prepare for growing supplies and lower risks. The GHG reduction potential of E-fuels depends entirely on abundant renewable electricity.publishedVersio
    corecore