13 research outputs found
Expression of endothelia and lymphocyte adhesion molecules in bronchus-associated lymphoid tissue (BALT) in adult human lung
BACKGROUND: Bronchus-associated lymphoid tissue (BALT) is the secondary lymphoid tissue in bronchial mucosa and is involved in the development of bronchopulmonary immune responses. Although migration of lymphocytes from blood vessels into secondary lymphoid tissues is critical for the development of appropriate adaptive immunity, the endothelia and lymphocyte adhesion molecules that recruit specific subsets of lymphocytes into human BALT are not known. The aim of this study was to determine which adhesion molecules are expressed on lymphocytes and high endothelial venules (HEVs) in human BALT. METHODS: We immunostained frozen sections of BALT from lobectomy specimens from 17 patients with lung carcinoma with a panel of monoclonal antibodies to endothelia and lymphocyte adhesion molecules. RESULTS: Sections of BALT showed B cell follicles surrounded by T cells. Most BALT CD4+ T cells had a CD45RO+ memory phenotype. Almost all BALT B cells expressed alpha4 integrin and L-selectin. In contrast, 43% of BALT T cells expressed alpha4 integrin and 20% of BALT T cells expressed L-selectin. Almost all BALT lymphocytes expressed LFA-1. HEVs, which support the migration of lymphocytes from the bloodstream into secondary lymphoid tissues, were prominent in BALT. All HEVs expressed peripheral node addressin, most HEVs expressed vascular cell adhesion molecule-1, and no HEVs expressed mucosal addressin cell adhesion molecule-1. CONCLUSION: Human BALT expresses endothelia and lymphocyte adhesion molecules that may be important in recruiting naive and memory/effector lymphocytes to BALT during protective and pathologic bronchopulmonary immune responses
Regulation of inducible BALT formation and contribution to immunity and pathology
Inducible bronchus-associated lymphoid tissue (iBALT) is an organized tertiary lymphoid structure that is not preprogrammed but develops in response to infection or under chronic inflammatory conditions. Emerging research has shown that iBALT provides a niche for T-cell priming and B-cell education to assist in the clearance of infectious agents, highlighting the prospect that iBALT may be engineered and harnessed to enhance protective immunity against respiratory pathogens. Although iBALT formation is associated with several canonical factors of secondary lymphoid organogenesis such as lymphotoxin-α and the homeostatic chemokines, CXCL13, CCL19, and CCL21, these cytokines are not mandatory for its formation, even though they influence its organization and function. Similarly, lymphoid tissue inducer cells are not a requisite of iBALT formation. In contrast, dendritic cells are emerging as pivotal players required to form and sustain the presence of iBALT. Regulatory T cells appear to be able to attenuate the development of iBALT, although the underlying mechanisms remain ill-defined. In this review, we discuss facets unique to iBALT induction, the cellular subsets, and molecular cues that govern this process, and the contribution of this ectopic structure toward the generation of immune responses in the pulmonary compartment