14 research outputs found

    Upper limb activity in myoelectric prosthesis users is biased towards the intact limb and appears unrelated to goal-directed task performance

    Get PDF
    Studies of the effectiveness of prosthetic hands involve assessing user performance on functional tasks in the lab/clinic, sometimes combined with self-report of real-world use. In this paper we compare real-world upper limb activity between a group of 20 myoelectric prosthesis users and 20 anatomically intact adults. Activity was measured from wrist-worn accelerometers over a 7-day period. The temporal patterns in upper limb activity are presented and the balance of activity between the two limbs quantified. We also evaluated the prosthesis users’ performance on a goal-directed task, characterised using measures including task success rate, completion time, gaze behaviour patterns, and kinematics (e.g. variability and patterns in hand aperture). Prosthesis users were heavily reliant on their intact limb during everyday life, in contrast to anatomically intact adults who demonstrated similar reliance on both upper limbs. There was no significant correlation between the amount of time a prosthesis was worn and reliance on the intact limb, and there was no significant correlation between either of these measures and any of the assessed kinematic and gaze-related measures of performance. We found participants who had been prescribed a prosthesis for longer to demonstrate more symmetry in their overall upper limb activity, although this was not reflected in the symmetry of unilateral limb use. With the exception of previously published case studies, this is the first report of real world upper limb activity in myoelectric prosthesis users and confirms the widely held belief that users are heavily reliant on their intact limb

    Refined clothespin relocation test and assessment of motion

    Get PDF
    Background: Advancements in upper limb prosthesis design have focused on providing increased degrees of freedom for the end effector through multiple articulations of a prosthetic hand, wrist and elbow. Measuring improvement in patient function with these devices requires development of appropriate assessment tools. Objectives: This study presents a refined clothespin relocation test for measuring performance and assessing compensatory motion between able-bodied subjects and subjects with upper limb impairments. Study Design: Comparative analysis Methods: Trunk and head motions of 13 able-bodied subjects who performed the refined clothespin relocation test were compared to the motion of a transradial prosthesis user with a single degree of freedom hand. Results: There were observable differences between the prosthesis user and the able-bodied group. The assessment used provided a clear indication of the differences in motion through analysis of compensatory motion. Conclusion: The refined clothespin relocation test provides additional benefits over the standard clothespin assessment and makes identification of compensatory motions easily identifiable to the researcher. While this paper establishes the method for the new assessment, further validation will need to be performed with more users

    Behaviour of dredged mud after stabilization with different additives

    No full text
    Mechanical stabilization methods for improving chemical stability of contaminated dredged material used for upland disposal are presented. Assessments of long term environmental consequences involving effects on heavy metal immobilization, TOC, COD, BOD, anion release, gas production and -composition after addition of lime, calcium carbonate, cement, coal fly ash and gypsum to fine grained Hamburg harbour sediments have been studied. Best results are attained with CaCO3 dure to insitu pH conditions and sufficient buffer capacity, which is of prime importance for metal immobilization and gas production
    corecore