124 research outputs found

    Computational studies of light acceptance and propagation in straight and curved multimodal active fibres

    Get PDF
    A Monte Carlo simulation has been performed to track light rays in cylindrical multimode fibres by ray optics. The trapping efficiencies for skew and meridional rays in active fibres and distributions of characteristic quantities for all trapped light rays have been calculated. The simulation provides new results for curved fibres, where the analytical expressions are too complex to be solved. The light losses due to sharp bending of fibres are presented as a function of the ratio of curvature to fibre radius and bending angle. It is shown that a radius of curvature to fibre radius ratio of greater than 65 results in a light loss of less than 10% with the loss occurring in a transition region at bending angles of pi/8 rad.Comment: 21 pages, 13 figure

    Loss of ASP but not ROPN1 reduces mammalian ciliary motility

    Get PDF
    Protein kinase A (PKA) signaling is targeted by interactions with A-kinase anchoring proteins (AKAPs) via a dimerization/docking domain on the regulatory (R) subunit of PKA. Four other mammalian proteins (ASP, ROPN1, SP17, and CABYR) share this highly conserved RII dimerization/docking (R2D2) domain. ASP and ROPN1 are 41% identical in sequence, interact with a variety of AKAPs in a manner similar to PKA, and are expressed in ciliated and flagellated human cells. To test the hypothesis that these proteins regulate motility, we developed mutant mouse lines lacking ASP or ROPN1. Both mutant lines produced normal numbers of cilia with intact ciliary ultrastructure. Lack of ROPN1 had no effect on ciliary motility. However, the beat frequency of cilia from mice lacking ASP is significantly slower than wild type, indicating that ASP signaling may regulate ciliary motility. This is the first demonstration of in vivo function for ASP. Similar localization of ASP in mice and humans indicates that these findings may translate to human physiology, and that these mice will be an excellent model for future studies related to the pathogenesis of human disease

    Cell Cycle Regulation and Cytoskeletal Remodelling Are Critical Processes in the Nutritional Programming of Embryonic Development

    Get PDF
    Many mechanisms purport to explain how nutritional signals during early development are manifested as disease in the adult offspring. While these describe processes leading from nutritional insult to development of the actual pathology, the initial underlying cause of the programming effect remains elusive. To establish the primary drivers of programming, this study aimed to capture embryonic gene and protein changes in the whole embryo at the time of nutritional insult rather than downstream phenotypic effects. By using a cross-over design of two well established models of maternal protein and iron restriction we aimed to identify putative common “gatekeepers” which may drive nutritional programming

    Lipopolysaccharide modifies amiloride-sensitive Na+ transport processes across human airway cells: role of mitogen-activated protein kinases ERK 1/2 and 5

    Get PDF
    Bacterial lipopolysaccharides (LPS) are potent inducers of proinflammatory signaling pathways via the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK), causing changes in the processes that control lung fluid homeostasis and contributing to the pathogenesis of lung disease. In human H441 airway epithelial cells, incubation of cells with 15 µg ml−1 LPS caused a significant reduction in amiloride-sensitive Isc from 15 ± 2 to 8 ± 2 µA cm−2 (p = 0.01, n = 13) and a shift in IC50 amiloride of currents from 6.8 × 10−7 to 6.4 × 10−6 M. This effect was associated with a decrease in the activity of 5 pS, highly Na+ selective, amiloride-sensitive <1 µM channels (HSC) and an increase in the activity of ∼18 pS, nonselective, amiloride-sensitive >10 µM cation channels (NSC) in the apical membrane. LPS decreased αENaC mRNA and protein abundance, inferring that LPS inhibited αENaC gene expression. This correlated with the decrease in HSC activity, indicating that these channels, but not NSCs, were comprised of at least αENaC protein. LPS increased NF-κB DNA binding activity and phosphorylation of extracellular signal-related kinase (ERK)1/2, but decreased phosphorylation of ERK5 in H441 cells. Pretreatment of monolayers with PD98059 (20 µM) inhibited ERK1/2 phosphorylation, promoted phosphorylation of ERK5, increased αENaC protein abundance, and reversed the effect of LPS on Isc and the shift in amiloride sensitivity. Inhibitors of NF-κB activation were without effect. Taken together, our data indicate that LPS acts via ERK signaling pathways to decrease αENaC transcription, reducing HSC/ENaC channel abundance, activity, and transepithelial Na+ transport in H441 airway epithelial cells

    Reliability, Validity, and Cut Scores of the South Oaks Gambling Screen (SOGS) for Chinese

    Get PDF
    We examined the reliability, validity, and classification accuracy of the South Oaks Gambling Screen (SOGS) when adopted for use in Chinese. The DSM-IV criteria for pathological gambling served as the standard against which the classification accuracy of the SOGS was tested. A total of 283 Chinese adults in the community and 94 Chinese treatment-seeking gamblers were recruited. The internal reliability of the SOGS was satisfactory for the general sample and acceptable for the gambling sample. The SOGS was correlated with the DSM-IV criteria items as well as psychosocial and gambling-related problems. Relative to the DSM-IV criteria, the SOGS tended to overestimate the number of pathological gamblers in both samples. In general, we were relatively confident that individuals were not pathological gamblers if the SOGS scores were between 0 and 4 and were pathological gamblers if the SOGS were between 11 and 20. There was about 50–50 chance of being pathological gamblers if the SOGS scores were between 8 and 10. However, the probability of individuals being pathological gamblers was about 0.30 if the SOGS scores were between 5 and 7. We proposed a SOGS cut score of 8 to screen for probable pathological gambling in Chinese societies

    Identifying a Window of Vulnerability during Fetal Development in a Maternal Iron Restriction Model

    Get PDF
    It is well acknowledged from observations in humans that iron deficiency during pregnancy can be associated with a number of developmental problems in the newborn and developing child. Due to the obvious limitations of human studies, the stage during gestation at which maternal iron deficiency causes an apparent impairment in the offspring remains elusive. In order to begin to understand the time window(s) during pregnancy that is/are especially susceptible to suboptimal iron levels, which may result in negative effects on the development of the fetus, we developed a rat model in which we were able to manipulate and monitor the dietary iron intake during specific stages of pregnancy and analyzed the developing fetuses. We established four different dietary-feeding protocols that were designed to render the fetuses iron deficient at different gestational stages. Based on a functional analysis that employed Auditory Brainstem Response measurements, we found that maternal iron restriction initiated prior to conception and during the first trimester were associated with profound changes in the developing fetus compared to iron restriction initiated later in pregnancy. We also showed that the presence of iron deficiency anemia, low body weight, and changes in core body temperature were not defining factors in the establishment of neural impairment in the rodent offspring

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Iron uptake and transport across physiological barriers

    Full text link
    corecore