3,004 research outputs found

    Adiabatic two-qubit gates in capacitively coupled quantum dot hybrid qubits

    Full text link
    The ability to tune qubits to flat points in their energy dispersions ("sweet spots") is an important tool for mitigating the effects of charge noise and dephasing in solid-state devices. However, the number of derivatives that must be simultaneously set to zero grows exponentially with the number of coupled qubits, making the task untenable for as few as two qubits. This is a particular problem for adiabatic gates, due to their slower speeds. Here, we propose an adiabatic two-qubit gate for quantum dot hybrid qubits, based on the tunable, electrostatic coupling between distinct charge configurations. We confirm the absence of a conventional sweet spot, but show that controlled-Z (CZ) gates can nonetheless be optimized to have fidelities of \sim99% for a typical level of quasistatic charge noise (σε\sigma_\varepsilon\simeq1 μ\mueV). We then develop the concept of a dynamical sweet spot (DSS), for which the time-averaged energy derivatives are set to zero, and identify a simple pulse sequence that achieves an approximate DSS for a CZ gate, with a 5×\times improvement in the fidelity. We observe that the results depend on the number of tunable parameters in the pulse sequence, and speculate that a more elaborate sequence could potentially attain a true DSS.Comment: 14 pages, 9 figure

    Spiritually informed not-for-profit performance measurement

    Get PDF
    Performance measurement has far-reaching implications for not-for-profit organizations because it serves to legitimize, attract resources, and preserve expectations of stakeholders. However, the existing theory and practice of not-for-profit performance measurement have fallen short, due in part, to an overuse of profit-oriented philosophies. Therefore, we examine not-for-profit performance measurement by utilizing Marques’ (J Bus Ethics 92:211–225, 2010) “five spiritual practices of Buddhism.” Marques’ spiritual practices—a pro-scientific philosophy, greater personal responsibility, healthy detachment, collaboration, and embracing a wholesome view—are the foundation of our research design. Responses from senior not-for-profit practitioners (n = 63) support the linkages between spiritual practices and not-for-profit performance measurement. We identify three essential performance measurement principles and elaborate on their capacity to generate awareness, higher meaning, and connectedness within not-for-profits

    Remotely controlled mirror of variable geometry for small angle x-ray diffraction with synchrotron radiation

    Get PDF
    A total-reflecting mirror of 120-cm length was designed and built to focus synchrotron radiation emanating from the electron-positron storage ring at the Stanford Linear Accelerator Center (SPEAR). The reflecting surface is of unpolished float glass. The bending and tilt mechanism allows very fine control of the curvature and selectability of the critical angle for wavelengths ranging from 0.5 to 3.0 Å. Elliptical curvature is used to minimize aberrations. The mirror is placed asymmetrically onto the ellipse so as to achieve a tenfold demagnification of the source. The bending mechanism reduces nonelastic deformation (flow) and minimizes strains and stresses in the glass despite its length. Special design features assure stability of the focused image. The mirror reduces the intensity of shorter wavelength harmonics by a factor of approximately 100

    Nutritional Manipulation of One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity

    Get PDF
    Exposure to arsenic (As) through drinking water is a substantial problem worldwide. The methylation of As, a reactive metalloid, generates monomethyl- (MMA) and dimethyl-arsenical (DMA) species. The biochemical pathway that catalyzes these reactions, one-carbon metabolism, is regulated by folate and other micronutrients. Arsenic methylation exerts a critical influence on both its urinary elimination and chemical reactivity. Mice having the As methyltransferase null genotype show reduced urinary As excretion, increased As retention, and severe systemic toxicity. The most toxic As metabolite in vitro is MMAIII, an intermediate in the generation of DMAV, a much less toxic metabolite. These findings have raised the question of whether As methylation is a detoxification or bioactivation pathway. Results of population-based studies suggest that complete methylation of inorganic As to DMA is associated with reduced risk for As-induced health outcomes, and that nutrients involved in one-carbon metabolism, such as folate, can facilitate As methylation and elimination

    Cooling of cryogenic electron bilayers via the Coulomb interaction

    Full text link
    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby, cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure, and analyze the power transfer. We show that across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.Comment: 9 pages, 5 figure
    corecore