106 research outputs found

    Morphological Methods to Evaluate Peripheral Nerve Fiber Regeneration: A Comprehensive Review

    Get PDF
    Regeneration of damaged peripheral nerves remains one of the main challenges of neurosurgery and regenerative medicine, a nerve functionality is rarely restored, especially after severe injuries. Researchers are constantly looking for innovative strategies for tackling this problem, with the development of advanced tissue-engineered nerve conduits and new pharmacological and physical interventions, with the aim of improving patients’ life quality. Different evaluation methods can be used to study the effectiveness of a new treatment, including functional tests, morphological assessment of regenerated nerve fibers and biomolecular analyses of key factors necessary for good regeneration. The number and diversity of protocols and methods, as well as the availability of innovative technologies which are used to assess nerve regeneration after experimental interventions, often makes it difficult to compare results obtained in different labs. The purpose of the current review is to describe the main morphological approaches used to evaluate the degree of nerve fiber regeneration in terms of their usefulness and limitations

    Hepatocyte growth factor (HGF) receptor expression is inducible and is part of the delayed-early response to HGF.

    Get PDF
    The c-MET proto-oncogene encodes the tyrosine kinase receptor for hepatocyte growth factor (HGF), also known as scatter factor, a potent mitogen and motogen for epithelial cells. The level of the HGF receptor expressed by epithelial cells varies in different growth conditions, being lower in growth arrested confluent monolayers and higher in growing sparse cells. The amount of HGF receptor mRNA increases from 3- to 5-fold after stimulation of confluent monolayers by serum and up to 10-fold after stimulation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate (TPA). An increased level of the receptor mRNA was also observed after cell stimulation with nanomolar concentration of HGF itself. The effect was transient, dose, and time-dependent. Transcription of a reporter gene under control of the cloned 297 base pair c-MET promoter was also stimulated by serum, TPA, or HGF. The accumulation of specific mRNA is followed by appearance of the HGF receptor precursor protein, which is further processed to the receptor mature form. After HGF stimulation, HGF receptor expression follows c-FOS and c-JUN induction with a peak approximately 4 h. Pretreatment with the protein synthesis inhibitor puromycin strongly reduced the response to HGF, while cycloheximide alone increased the level of the receptor mRNA. These data show that c-MET behaves as a delayed early-response gene and suggest that the HGF response is autoamplified by inducing the specific receptor

    Identification and validation of suitable housekeeping genes for normalizing quantitative real-time PCR assays in injured peripheral nerves

    Get PDF
    Injury to the peripheral nerve induces dramatic changes in terms of cellular composition that are reflected on RNA quality and quantity, making messenger RNA expression analysis very complex. Several commonly used housekeeping genes are regulated following peripheral nerve injury and are thus not suitable for quantitative real-time PCR normalization; moreover, the presence of pseudogenes in some of them impairs their use. To deal with this problem, we have developed a new method to identify new stable housekeeping genes based on publicly available microarray data on normal and injured nerves. Four new candidate stable genes were identified and validated by quantitative real-time PCR analysis on nerves during the different phases after nerve injury: nerve degeneration, regeneration and remyelination. The stability measure of these genes was calculated with both NormFinder and geNorm algorithms and compared with six commonly used housekeeping genes. This procedure allowed us to identify two new and highly stable genes that can be employed for normalizing injured peripheral nerve data: ANKRD27 and RICTOR. Besides providing a tool for peripheral nerve research, our study also describes a simple and cheap procedure that can be used to identify suitable housekeeping genes in other tissues and organs
    corecore