78 research outputs found

    Thyroid cancers: From surgery to current and future systemic therapies through their molecular identities

    Get PDF
    Differentiated thyroid cancers (DTC) are commonly and successfully treated with total thyroidectomy plus/minus radioiodine therapy (RAI). Medullary thyroid cancer (MTC) is only treated with surgery but only intrathyroidal tumors are cured. The worst prognosis is for anaplastic (ATC) and poorly differentiated thyroid cancer (PDTC). Whenever a local or metastatic advanced disease is present, other treatments are required, varying from local to systemic therapies. In the last decade, the efficacy of the targeted therapies and, in particular, tyrosine kinase inhibitors (TKIs) has been demonstrated. They can prolong the disease progression-free survival and represent the most important therapeutic option for the treatment of advanced and progressive thyroid cancer. Currently, lenvatinib and sorafenib are the approved drugs for the treatment of RAI-refractory DTC and PDTC while advanced MTC can be treated with either cabozantinib or vandetanib. Dabrafenib plus trametinib is the only approved treatment by FDA for BRAFV600E mutated ATC. A new generation of TKIs, specifically for single altered oncogenes, is under evaluation in phase 2 and 3 clinical trials. The aim of this review was to provide an overview of the current and future treatments of thyroid cancer with regards to the advanced and progressive cases that require systemic therapies that are becoming more and more targeted on the molecular identity of the tumor

    The comparison of outcomes from tyrosine kinase inhibitor monotherapy in second- or third-line for advanced non-small-cell lung cancer patients with wild-type or unknown EGFR status

    Get PDF
    none18noBackground: Second-line treatment for advanced non-small-cell lung cancer (NSCLC) patients includes monotherapy with a third-generation cytotoxic drug (CT) or a tyrosine kinase inhibitor (TKI). These options are the actual standard for EGFR wild-type (WT) status, as patients with EGFR mutations achieve greater benefit by the use of TKI in first-line treatment. Some clinical trials and meta-analyses investigated the comparison between CT and TKI in second-line, but data are conflicting. Methods: We designed a retrospective trial to gather information about TKI sensitivity in comparison with CT. We selected from clinical records patients treated with at least 1 line of CT and at least 1 line of TKI. We collected data about age, sex, performance status, comorbidity, smoking status, histotype, metastatic sites, EGFR status, treatment schedule, better response and time-to-progression (TTP) for each line of treatment and overall survival (OS). Results: 93 patients met selection criteria. Mean age 66,7 (range: 46-84). M/F ratio is 3:1. 39 EGFR-WT and 54 EGFR-UK. All patients received erlotinib or gefitinib as second-line treatment or erlotinib as third-line treatment. No TTP differences were observed for both second-line (HR:0,91; p = 0,6333) and third-line (HR:1.1; p = 0,6951) treatment (TKI vs CT). A trend of a benefit in OS in favor of 3rd-line TKI (HR:0,68; p = 0,11). Conclusions: This study explores the role of TKIs in EGFR non-mutated NSCLC patients. OS analysis highlights a trend to a benefit in patients who received TKI in third-line, even if this result is statistically non-significant. Further analysis are needed to find an explanation for this observation.openBronte G.; Franchina T.; Alu M.; Sortino G.; Celesia C.; Passiglia F.; Savio G.; Laudani A.; Russo A.; Picone A.; Rizzo S.; De Tursi M.; Gambale E.; Bazan V.; Natoli C.; Blasi L.; Adamo V.; Russo A.Bronte, G.; Franchina, T.; Alu, M.; Sortino, G.; Celesia, C.; Passiglia, F.; Savio, G.; Laudani, A.; Russo, A.; Picone, A.; Rizzo, S.; De Tursi, M.; Gambale, E.; Bazan, V.; Natoli, C.; Blasi, L.; Adamo, V.; Russo, A

    The comparison of outcomes from tyrosine kinase inhibitor monotherapy in second- or third-line for advanced non-small-cell lung cancer patients with wild-type or unknown EGFR status

    Get PDF
    Background: Second-line treatment for advanced non-small-cell lung cancer (NSCLC) patients includes monotherapy with a third-generation cytotoxic drug (CT) or a tyrosine kinase inhibitor (TKI). These options are the actual standard for EGFR wild-type (WT) status, as patients with EGFR mutations achieve greater benefit by the use of TKI in first-line treatment. Some clinical trials and meta-analyses investigated the comparison between CT and TKI in second-line, but data are conflicting. Methods: We designed a retrospective trial to gather information about TKI sensitivity in comparison with CT. We selected from clinical records patients treated with at least 1 line of CT and at least 1 line of TKI. We collected data about age, sex, performance status, comorbidity, smoking status, histotype, metastatic sites, EGFR status, treatment schedule, better response and time-to-progression (TTP) for each line of treatment and overall survival (OS). Results: 93 patients met selection criteria. Mean age 66,7 (range: 46-84). M/F ratio is 3:1. 39 EGFR-WT and 54 EGFR-UK. All patients received erlotinib or gefitinib as second-line treatment or erlotinib as third-line treatment. No TTP differences were observed for both second-line (HR:0,91; p = 0,6333) and third-line (HR:1.1; p = 0,6951) treatment (TKI vs CT). A trend of a benefit in OS in favor of 3rd-line TKI (HR:0,68; p = 0,11). Conclusions: This study explores the role of TKIs in EGFR non-mutated NSCLC patients. OS analysis highlights a trend to a benefit in patients who received TKI in third-line, even if this result is statistically non-significant. Further analysis are needed to find an explanation for this observation

    Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ

    Get PDF
    Ca2+, Mg2+, and K+ activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca2+, by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca2+ activity was ∼0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca2+ in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca2+) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca2+ within a physiological range of concentrations (0.1–1.0 mM). Aggregation of the physiological vacuolar Na+ (60 mM) and Mg2+ (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca2+ variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca2+ activates the SV channel in a voltage-independent manner with Kd=0.7–1.5 μM. Comparison of the vacuolar Ca2+ fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 μM) cytosolic Ca2+, only 0.5% of SV channels are open. This mediates a Ca2+ release of only a few pA per vacuole (∼0.1 pA per single SV channel). Overall, our data suggest that the release of Ca2+ through SV channels makes little contribution to a global cytosolic Ca2+ signal

    Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters

    Get PDF
    open18siA distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.openFesta M.; Minicozzi V.; Boccaccio A.; Lagostena L.; Gradogna A.; Qi T.; Costa A.; Larisch N.; Hamamoto S.; Pedrazzini E.; Milenkovic S.; Scholz-Starke J.; Ceccarelli M.; Vitale A.; Dietrich P.; Uozumi N.; Gambale F.; Carpaneto A.Festa, M.; Minicozzi, V.; Boccaccio, A.; Lagostena, L.; Gradogna, A.; Qi, T.; Costa, A.; Larisch, N.; Hamamoto, S.; Pedrazzini, E.; Milenkovic, S.; Scholz-Starke, J.; Ceccarelli, M.; Vitale, A.; Dietrich, P.; Uozumi, N.; Gambale, F.; Carpaneto, A

    No impact of NRAS mutation on features of primary and metastatic melanoma or on outcomes of checkpoint inhibitor immunotherapy: An italian melanoma intergroup (IMI) study

    Get PDF
    Neuroblastoma RAS Viral Oncogen Homolog (NRAS) mutant melanoma is usually considered more aggressive and more responsive to checkpoint inhibitor immunotherapy (CII) than NRAS wildtype. We retrospectively recruited 331 metastatic melanoma patients treated with CII as first line: 162 NRAS-mutant/BRAF wild-type and 169 wt/wt. No substantial differences were observed among the two cohorts regarding the melanoma onset and disease-free interval. Also, overall response to CII, progression-free survival and overall survival were similar in the two groups. Therefore, our data do not show increased aggressiveness and higher responsiveness to CII in NRAS-mutant melanoma. The controversy in the published data could be due to different patient characteristics and treatment heterogeneity. We believe our data adds evidence to clear up these controversial issues. Aims: It is debated whether the NRAS-mutant melanoma is more aggressive than NRAS wildtype. It is equally controversial whether NRAS-mutant metastatic melanoma (MM) is more responsive to checkpoint inhibitor immunotherapy (CII). 331 patients treated with CII as first-line were retrospectively recruited: 162 NRAS-mutant/BRAF wild-type (mut/wt) and 169 wt/wt. We compared the two cohorts regarding the characteristics of primary and metastatic disease, disease-free interval (DFI) and outcome to CII. No substantial differences were observed between the two groups at melanoma onset, except for a more frequent ulceration in the wt/wt group (p = 0.03). Also, the DFI was very similar in the two cohorts. In advanced disease, we only found lung and brain progression more frequent in the wt/wt group. Regarding the outcomes to CII, no significant differences were reported in overall response rate (ORR), disease control rate (DCR), progression free survival (PFS) or overall survival (OS) (42% versus 37%, 60% versus 59%, 12 (95% CI, 7-18) versus 9 months (95% CI, 6-16) and 32 (95% CI, 23-49) versus 27 months (95% CI, 16-35), respectively). Irrespectively of mutational status, a longer OS was significantly associated with normal LDH, <3 metastatic sites, lower white blood cell and platelet count, lower neutrophil-to-lymphocyte (N/L) ratio. Our data do not show increased aggressiveness and higher responsiveness to CII in NRAS-mutant MM
    corecore