9 research outputs found

    The Indris have got rhythm! Timing and pitch variation of a primate song examined between sexes and age classes

    Get PDF
    A crucial, common feature of speech and music is that they show non-random structures over time. It is an open question which of the other species share rhythmic abilities with humans, but in most cases the lack of knowledge about their behavioral displays prevents further studies. Indris are the only lemurs who sing. They produce loud howling cries that can be heard at several kilometers, in which all members of a group usually sing. We tested whether overlapping and turn-taking during the songs followed a precise pattern by analysing the temporal structure of the individuals' contribution to the song. We found that both dominants (males and females) and non-dominants influenced the onset timing one another. We have found that the dominant male and the dominant female in a group overlapped each other more frequently than they did with the non-dominants. We then focused on the temporal and frequency structure of particular phrases occurring during the song. Our results show that males and females have dimorphic inter-onset intervals during the phrases. Moreover, median frequencies of the unit emitted in the phrases also differ between the sexes, with males showing higher frequencies when compared to females. We have not found an effect of age on the temporal and spectral structure of the phrases. These results indicate that singing in indris has a high behavioral flexibility and varies according to social and individual factors. The flexible spectral structure of the phrases given during the song may underlie perceptual abilities that are relatively unknown in other non-human primates, such as the ability to recognize particular pitch patterns

    Primate rhythmic categories analyzed on an individual basis

    Get PDF
    Rhythm is a fundamental feature characterizing communicative displays, and recent studies showed that primate songs encompass categorical rhythms falling on small integer ratios observed in humans. We individually assessed the presence and sexual dimorphism of rhythmic categories, analyzing songs emitted by 39 wild indris. Considering the intervals between the units given during each song, we extracted 13556 interval ratios and found three peaks (at around 0.33, 0.47, and 0.70). Two peaks indicated rhythmic categories corresponding to small integer ratios (1:1, 2:1). All individuals showed a peak at 0.70, and most showed those at 0.47 and 0.33. In addition, we found sex differences in the peak at 0.47 only, with males showing lower values than females. This work investigates the presence of individual rhythmic categories in a non-human species; further research may highlight the significance of rhythmicity and untie selective pressures that guided its evolution across species, including humans

    Categorical rhythms in a singing primate

    No full text
    What are the origins of musical rhythm? One approach to the biology and evolution of music consists in finding common musical traits across species. These similarities allow biomusicologists to infer when and how musical traits appeared in our species1. A parallel approach to the biology and evolution of music focuses on finding statistical universals in human music2. These include rhythmic features that appear above chance across musical cultures. One such universal is the production of categorical rhythms3, defined as those where temporal intervals between note onsets are distributed categorically rather than uniformly2,4,5. Prominent rhythm categories include those with intervals related by small integer ratios, such as 1:1 (isochrony) and 1:2, which translates as some notes being twice as long as their adjacent ones. In humans, universals are often defined in relation to the beat, a top-down cognitive process of inferring a temporal regularity from a complex musical scene1. Without assuming the presence of the beat in other animals, one can still investigate its downstream products, namely rhythmic categories with small integer ratios detected in recorded signals. Here we combine the comparative and statistical universals approaches, testing the hypothesis that rhythmic categories and small integer ratios should appear in species showing coordinated group singing3. We find that a lemur species displays, in its coordinated songs, the isochronous and 1:2 rhythm categories seen in human music, showing that such categories are not, among mammals, unique to humans3
    corecore