242 research outputs found

    Recent Advances in Bacterial Amelioration of Plant Drought and Salt Stress

    Get PDF
    The recent literature indicates that plant growth-promoting bacteria (PGPB) employ a range of mechanisms to augment a plant’s ability to ameliorate salt and drought stress. These mechanisms include synthesis of auxins, especially indoleacetic acid, which directly promotes plant growth; synthesis of antioxidant enzymes such as catalase, superoxide dismutase and peroxidase, which prevents the deleterious effects of reactive oxygen species; synthesis of small molecule osmolytes, e.g., trehalose and proline, which structures the water content within plant and bacterial cells and reduces plant turgor pressure; nitrogen fixation, which directly improves plant growth; synthesis of exopolysaccharides, which protects plant cells from water loss and stabilizes soil aggregates; synthesis of antibiotics, which protects stress-debilitated plants from soil pathogens; and synthesis of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which lowers the level of ACC and ethylene in plants, thereby decreasing stress-induced plant senescence. Many of the reports of overcoming these plant stresses indicate that the most successful PGPB possess several of these mechanisms; however, the involvement of any particular mechanism in plant protection is nearly always inferred and not proven

    The use of plant growth-promoting bacteria to prevent nematode damage to plants

    Get PDF
    Plant-parasitic nematodes have been estimated to annually cause around US $173 billion in damage to plant crops worldwide. Moreover, with global climate change, it has been suggested that the damage to crops from nematodes is likely to increase in the future. Currently, a variety of potentially dangerous and toxic chemical agents are used to limit the damage to crops by plant-parasitic nematodes. As an alternative to chemicals and a more environmentally friendly means of decreasing nematode damage to plants, researchers have begun to examine the possible use of various soil bacteria, including plant growth-promoting bacteria (PGPB). Here, the current literature on some of the major mechanisms employed by these soil bacteria is examined. It is expected that within the next 5\u201310 years, as scientists continue to elaborate the mechanisms used by these bacteria, biocontrol soil bacteria will gradually replace the use of chemicals as nematicides

    Recent developments in the study of plant microbiomes

    Get PDF
    To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions

    Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress

    Get PDF
    Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population

    Phytoremediation of a highly arsenic polluted site, using pteris vittata L. And arbuscular mycorrhizal fungi

    Get PDF
    Phytoremediation is a promising green technique for the restoration of a polluted environment, but there is often a gap between lab and field experiments. The fern, Pteris vittata L., can tolerate a high soil arsenic concentration and rapidly accumulate the metalloid in its fronds. Arbuscular mycorrhizal fungi (AMF) are mutualistic fungi that form a symbiosis with most land plants\u2019 roots, improve their growth, and induce stress tolerance. This paper reports the results obtained using P. vittata inoculated with AMF, to extract Arsenic (As) from an industrial site highly contaminated also by other pollutants. Two experiments have been performed. In the first one, AMF colonized ferns were grown for two years under controlled conditions in soil coming from the metallurgic site. Positive effects on plant health and As phytoextraction and accumulation were detected. Then, considering these results, we performed a three year in situ experiment in the industrial site, to assess the remediation of As at two different depths. Our results show that the colonization of P. vittata with AMF improved the remediation process of As with a significant impact on the depth 0\u20130.2 m

    Impact of Phosphatic Nutrition on Growth Parameters and Artemisinin Production in Artemisia annua Plants Inoculated or Not with Funneliformis mosseae

    Get PDF
    Artemisia annua L. is a medicinal plant appreciated for the production of artemisinin, a molecule used for malaria treatment. However, the natural concentration of artemisinin in planta is low. Plant nutrition, in particular phosphorus, and arbuscular mycorrhizal (AM) fungi can affect both plant biomass and secondary metabolite production. In this work, A. annua plants were inoculated or not with the AM fungus Funneliformis mosseae BEG12 and cultivated for 2 months in controlled conditions at three different phosphatic (P) concentrations (32, 96, and 288 µM). Plant growth parameters, leaf photosynthetic pigment concentrations, artemisinin production, and mineral uptake were evaluated. The different P levels significantly affected the plant shoot growth, AM fungal colonization, and mineral acquisition. High P levels negatively influenced mycorrhizal colonization. The artemisinin concentration was inversely correlated to the P level in the substrate. The fungus mainly affected root growth and nutrient uptake and significantly lowered leaf artemisinin concentration. In conclusion, P nutrition can influence plant biomass production and the lowest phosphate level led to the highest artemisinin concentration, irrespective of the plant mineral uptake. Plant responses to AM fungi can be modulated by cost–benefit ratios of the mutualistic exchange between the partners and soil nutrient availability

    Effects of compost amendment on glycophyte and halophyte crops grown on saline soils: Isolation and characterization of rhizobacteria with plant growth promoting features and high salt resistance

    Get PDF
    Soil salinization and desertification due to climate change are the most relevant challenges for the agriculture of the 21st century. Soil compost amendment and plant growth promoting rhizobacteria (PGP-R) are valuable tools to mitigate salinization and desertification impacts on agricultural soils. Selection of novel halo/thermo-tolerant bacteria from the rhizosphere of glicophytes and halophytes, grown on soil compost amended and watered with 150/300 mM NaCl, was the main objective of our study. Beneficial effects on the biomass, well-being and resilience, exerted on the assayed crops (maize, tomato, sunflower and quinoa), were clearly observable when soils were amended with 20% compost despite the very high soil electric conductivity (EC). Soil compost amendment not only was able to increase crop growth and biomass, but also their resilience to the stress caused by very high soil EC (up to 20 dS m 121 ). Moreover, compost amendment has proved itself a valuable source of highly halo-(4.0 M NaCl)/thermo tolerant rhizobacteria (55\u25e6C), showing typical PGP features. Among the 13 rhizobacterial isolates, molecularly and biochemically characterized, two bacterial strains showed several biochemical PGP features. The use of compost is growing all around the world reducing considerably for farmers soil fertilization costs. In fact, only in Italy its utilization has ensured, in the last years, a saving of 650 million euro for the farmers, without taking into account the environment and human health benefits. Furthermore, the isolation of halo/thermo-tolerant PGPR strains and their use will allow the recovery and cultivation of hun-dreds of thousands of hectares of saline and arid soils now unproductive, making agriculture more respectful of agro-ecosystems also in view of upcoming climate change

    Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance

    Get PDF
    Bacterial endophytes can colonize plant tissues without harming the plant. Instead, they are often able to increase plant growth and tolerance to environmental stresses. In this work, new strains of bacterial endophytes were isolated from three economically important crop plants (sorghum, cucumber and tomato) grown in three different regions in soils with different management. All bacterial strains were identified by 16S rRNA sequencing and characterized for plant beneficial traits. Based on physiological activities, we selected eight strains that were further tested for their antibiotic resistance profile and for the ability to efficiently colonize the interior of sorghum plants. According to the results of the re-inoculation test, five strains were used to inoculate sorghum seeds. Then, plant growth promotion activity was assessed on sorghum plants exposed to salinity stress. Only two bacterial endophytes increased plant biomass, but three of them delayed or reduced plant salinity stress symptoms. These five strains were then characterized for the ability to produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which is involved in the increase of stress tolerance. Pseudomonas brassicacearum SVB6R1 was the only strain that was able to produce this enzyme, suggesting that ACC deaminase is not the only physiological trait involved in conferring plant tolerance to salt stress in these bacterial strains

    Metaproteomic characterization of the Vitis vinifera rhizosphere

    Get PDF
    The rhizosphere is a hotspot of microbial activity where the release of root exudates stimulates bacterial density and diversity. The majority of the bacterial cells in soil are viable, unculturable, but active. Proteomic tools could be useful in gaining information about microbial community activity and to better understand the real interactions between roots and soil. The aim of this work was to characterize the bacterial community associated with Vitis vinifera cv. Pinot Noir roots using a metaproteome approach. Our results confirmed the large potential of proteomics in describing the environmental microbial communities and their activities: in particular, we showed that bacteria belonging to Streptomyces, Bacillus, Bradyrhizobium, Burkholderia and Pseudomonas genera are the most active in protein expression. Concerning the biological activity of these genera in the rhizosphere, we observed the exclusive presence of the phosphorus metabolic process and the regulation of primary metabolic processes. To our knowledge, this is the first study reporting the rhizosphere proteome of V. vinifera, describing the bacterial community structure and activity of an important ecosystem for the Italian landscape, agriculture and economy
    • …
    corecore