491 research outputs found

    The measurements of light high-energy ions in NINA-2 experiment

    Get PDF
    The flux of energetic light ions at low altitude is both an important input and output for self-consistent calculations of albedo particles resulting from the interaction of trapped and cosmic ray particles, with the upper atmosphere. In addition, data on the flux of light ions are needed to evaluate radiation damages on space-borne instruments and on space mission crews. In spite of that, sources of data on the flux of energetic ions at LEO are roughly limited to the AP-8 model, CREME/CREME96 codes and the SAMPEX, NOAA/TIROS satellites. The existing and operational European SAC-C/ICARE and PROBA-1/SREM instruments could also be potential sources for proton data at LEO. Although AP-8 and SAMPEX/PSB97 may be publicly accessed through the SPENVIS, they exhibit an order of magnitude difference in low altitude proton fluxes and they do not contain helium fluxes. Therefore, improved light ion radiation models are still needed. <br><br> In this paper we present a procedure to identify and measure the energy of ions that are not stopped in the NINA-2 instrument. Moreover, problems related to particles that cross the instrument in the opposite direction are addressed and shown to be a possible cause of particle misidentification. Measuring fluxes of low abundance elements like energetic helium ions requires a good characterisation of all possible sources of backgrounds in the detector. Hints to determine the several contributions to the background are presented herein and may be applied to extract an order of magnitude of energetic ions fluxes from existing data sets, while waiting for dedicated high performance instruments

    Dark Matter Search Perspectives with GAMMA-400

    Full text link
    GAMMA-400 is a future high-energy gamma-ray telescope, designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of dark matter particles, and to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to ~3000 GeV. Its angular resolution is ~0.01 deg(Eg > 100 GeV), and the energy resolution ~1% (Eg > 10 GeV). GAMMA-400 is planned to be launched on the Russian space platform Navigator in 2019. The GAMMA-400 perspectives in the search for dark matter in various scenarios are presented in this paperComment: 4 pages, 4 figures, submitted to the Proceedings of the International Cosmic-Ray Conference 2013, Brazil, Rio de Janeir

    The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV

    Full text link
    Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray electrons have been identified above 50 GeV. The electron spectrum can be described with a single power law energy dependence with spectral index -3.18 +- 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.Comment: 11 pages, 3 figures, accepted for publication in PR

    PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy

    Full text link
    The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the galaxy. More precise secondary production models are required for a complete interpretation of the results.Comment: 11 pages, 3 figures, 1 table. Accepted for publication in Physical Review Letter

    Constraining Very Heavy Dark Matter Using Diffuse Backgrounds of Neutrinos and Cascaded Gamma Rays

    Full text link
    We consider multi-messenger constraints on very heavy dark matter (VHDM) from recent Fermi gamma-ray and IceCube neutrino observations of isotropic background radiation. Fermi data on the diffuse gamma-ray background (DGB) shows a possible unexplained feature at very high energies (VHE), which we have called the "VHE Excess" relative to expectations for an attenuated power law extrapolated from lower energies. We show that VHDM could explain this excess, and that neutrino observations will be an important tool for testing this scenario. More conservatively, we derive new constraints on the properties of VHDM for masses of 10^3-10^10 GeV. These generic bounds follow from cosmic energy budget constraints for gamma rays and neutrinos that we developed elsewhere, based on detailed calculations of cosmic electromagnetic cascades and also neutrino detection rates. We show that combining both gamma-ray and neutrino data is essential for making the constraints on VHDM properties both strong and robust. In the lower mass range, our constraints on VHDM annihilation and decay are comparable to other results; however, our constraints continue to much higher masses, where they become relatively stronger.Comment: 33 pages, 21 figures, accepted for publication in JCA
    • …
    corecore