60 research outputs found

    REACCELERATION OF ION BEAMS FOR PARTICLE THERAPY

    Get PDF
    Abstract At the Heidelberg Ion-Beam Therapy Centre (HIT) more than 2000 cancer patients have been treated with ions using the raster-scanning method since 2009. The synchrotron provides pencil beams in therapy quality for more than 250 energy steps for each ion species allowing to vary the penetration depth and thus to irradiate the tumour slice-by-slice. So far, changing the beam energy necessitates a new synchrotron cycle, including all phases without beam extraction. As the number of ions that can be accelerated in the synchrotron usually exceeds the required number of ions for one energy slice, the duty cycle could be significantly reduced by reaccelerating or decelerating the remaining ions to the adjacent energy level. By alternating acceleration and extraction phases several slices could be irradiated with only short interruptions. This leads to a better duty cycle and a larger number of patients that can be treated in the same time. Therefore the behaviour of a reaccelerated but transversally blown up beam -due to the use of RF-knockout extraction -must be investigated in detail, beam losses have to be minimised. To estimate the potential benefit of such an operation mode, treatment time has been simulated and compared to the time achieved in the past. A reduction of more than 50 % is possible

    The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells.

    Get PDF
    Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of differentiation markers and transcriptional reprogramming of hMSCs. This function is dependent upon CDK9 and the WAC adaptor protein, which are required for H2B monoubiquitination. Finally, we show that RNF40 is required for the resolution of the H3K4me3/H3K27me3 bivalent poised state on lineage-specific genes during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation

    Systematic profiling of DNMT3A variants reveals protein instability mediated by the DCAF8 E3 ubiquitin ligase adaptor

    Get PDF
    Clonal hematopoiesis is a prevalent age-related condition associated with greatly increased risk of hematologic disease; mutations in DNA methyltransferase 3A (DNMT3A) are the most common driver of this state. DNMT3A variants occur across the gene with some particularly associated with malignancy, but the functional relevance and mechanisms of pathogenesis of the majority of mutations is unknown. Here, we systematically investigated the methyltransferase activity and protein stability of 253 disease-associated DNMT3A mutations, finding that 74% were loss-of-function mutations. Half of these variants exhibited reduced protein stability and, as a class, correlated with greater clonal expansion and AML development. We investigated the mechanisms underlying the instability using a CRISPR screen and uncovered regulated destruction of DNMT3A mediated by the DCAF8 E3 ubiquitin ligase adaptor. We establish a new paradigm to classify novel variants that has prognostic and potential therapeutic significance for patients with hematologic disease

    Off-targets in epigenome editing

    No full text

    Guanine quantum defects in carbon nanotubes for biosensing

    No full text
    Fluorescent single wall carbon nanotubes (SWCNTs) are used as nanoscale biosensors in diverse applications. Selectivity is built in by non-covalent functionalization with polymers such as DNA. In general, fluorescence sensing with SWCNTs would benefit from covalent DNA-conjugation but it is not known how changes in conformational flexibility and photophysics affect the sensing mechanism. Recently, covalent functionalization was demonstrated by conjugating guanine bases of adsorbed DNA to the SWCNT surface as guanine quantum defects (g-defects). Here, we create guanine defects in (GT)10 coated SWCNTs (Gd-SWCNTs) and explore how this affects molecular sensing. We vary the defect densities, which shifts the E11 fluorescence emission by 55 nm to max = 1049 nm for the highest defect density. Furthermore, the difference between absorption maximum and emission maximum (Stokes shift) increases with increasing defect density by 0.87 nm per nm of absorption shift and up to 27 nm in total. Gd-SWCNTs represent sensitive sensors and increase their fluorescence >70 % in response to the important neurotransmitter dopamine and decrease 93 % in response to riboflavin. Additionally, cellular uptake of Gd-SWCNTs decreases. These results show how physiochemical properties alter with guanine defects and that Gd-SWCNTs constitute a versatile optical biosensor platform
    • …
    corecore