7 research outputs found

    Lifestyle factors and visceral adipose tissue: Results from the PREDIMED-PLUS study

    Get PDF
    Background: Visceral adipose tissue (VAT) is a strong predictor of cardiometabolic health, and lifestyle factors may have a positive influence on VAT depot. This study aimed to assess the cross-sectional associations between baseline levels of physical activity (PA), sedentary behaviours (SB) and adherence to the Mediterranean diet (MedDiet) with VAT depot in older individuals with overweight/obesity and metabolic syndrome. Methods: Baseline data of the PREDIMED-Plus study including a sample of 1,231 Caucasian men and women aged 55-75 years were used. Levels of leisure-time PA (total, light, and moderate-to-vigorous, in METs·min/day) and SB (total and TV-viewing, in h/day) were evaluated using validated questionnaires. Adherence to the MedDiet was evaluated using a 17-item energy-restricted MedDiet (erMedDiet) screener. The chair-stand test was used to estimate the muscle strength. VAT depot was assessed with DXA-CoreScan. Multivariable adjusted linear regression models were used to evaluate the association between lifestyle factors and VAT. For the statistics we had used multiadjusted linear regression models. Results: Total leisure-time PA (100 METs·min/day: β -24.3g, -36.7;-11.9g), moderate-to-vigorous PA (β -27.8g, 95% CI -40.8;-14.8g), chair-stand test (repeat: β -11.5g, 95% CI -20.1;-2.93g) were inversely associated, and total SB (h/day: β 38.2g, 95% CI 14.7;61.7) positively associated with VAT. Light PA, TV-viewing time and adherence to an erMedDiet were not significantly associated with VAT. Conclusions: In older adults with overweigh/obesity and metabolic syndrome, greater PA, muscle strength, and lower total SB were associated with less VAT depot. In this study, adherence to an erMedDiet was not associated with lower VAT

    Isotemporal substitution of inactive time with physical activity and time in bed: cross-sectional associations with cardiometabolic health in the PREDIMEDPlus study

    Get PDF
    Background: This study explored the association between inactive time and measures of adiposity, clinical parameters, obesity, type 2 diabetes and metabolic syndrome components. It further examined the impact of reallocating inactive time to time in bed, light physical activity (LPA) or moderate-to-vigorous physical activity (MVPA) on cardio-metabolic risk factors, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Methods: This is a cross-sectional analysis of baseline data from 2189 Caucasian men and women (age 55-75 years, BMI 27-40 Kg/m2) from the PREDIMED-Plus study (http://www.predimedplus.com/). All participants had ≥3 components of the metabolic syndrome. Inactive time, physical activity and time in bed were objectively determined using triaxial accelerometers GENEActiv during 7 days (ActivInsights Ltd., Kimbolton, United Kingdom). Multiple adjusted linear and logistic regression models were used. Isotemporal substitution regression modelling was performed to assess the relationship of replacing the amount of time spent in one activity for another, on each outcome, including measures of adiposity and body composition, biochemical parameters and blood pressure in older adults. Results: Inactive time was associated with indicators of obesity and the metabolic syndrome. Reallocating 30 min per day of inactive time to 30 min per day of time in bed was associated with lower BMI, waist circumference and glycated hemoglobin (HbA1c) (all p-values < 0.05). Reallocating 30 min per day of inactive time with 30 min per day of LPA or MVPA was associated with lower BMI, waist circumference, total fat, visceral adipose tissue, HbA1c, glucose, triglycerides, and higher body muscle mass and HDL cholesterol (all p-values < 0.05). Conclusions: Inactive time was associated with a poor cardio-metabolic profile. Isotemporal substitution of inactive time with MVPA and LPA or time in bed could have beneficial impact on cardio-metabolic health

    An energy-reduced mediterranean diet, physical activity, and body composition: An interim subgroup snalysis of the PREDIMED-Plus randomized clinical trial

    No full text
    Importance: Strategies targeting body composition may help prevent chronic diseases in persons with excess weight, but randomized clinical trials evaluating lifestyle interventions have rarely reported effects on directly quantified body composition. Objective: To evaluate the effects of a lifestyle weight-loss intervention on changes in overall and regional body composition. Design, setting, and participants: The ongoing Prevención con Dieta Mediterránea-Plus (PREDIMED-Plus) randomized clinical trial is designed to test the effect of the intervention on cardiovascular disease prevention after 8 years of follow-up. The trial is being conducted in 23 Spanish research centers and includes men and women (age 55-75 years) with body mass index between 27 and 40 and metabolic syndrome. The trial reported herein is an interim subgroup analysis of the intermediate outcome body composition after 3-year follow-up, and data analysis was conducted from February 1 to November 30, 2022. Of 6874 total PREDIMED-Plus participants, a subsample of 1521 individuals, coming from centers with access to a dual energy x-ray absorptiometry device, underwent body composition measurements at 3 time points. Intervention: Participants were randomly allocated to a multifactorial intervention based on an energy-reduced Mediterranean diet (MedDiet) and increased physical activity (PA) or to a control group based on usual care, with advice to follow an ad libitum MedDiet, but no physical activity promotion. Main outcomes and measures: The outcomes (continuous) were 3-year changes in total fat and lean mass (expressed as percentages of body mass) and visceral fat (in grams), tested using multivariable linear mixed-effects models. Clinical relevance of changes in body components (dichotomous) was assessed based on 5% or more improvements in baseline values, using logistic regression. Main analyses were performed in the evaluable population (completers only) and in sensitivity analyses, multiple imputation was performed to include data of participants lost to follow-up (intention-to-treat analyses). Results: A total of 1521 individuals were included (mean [SD] age, 65.3 [5.0] years; 52.1% men). In comparison with the control group (n=761), participants in the intervention arm (n=760) showed greater reductions in the percentage of total fat (between group differences after 1-year, -0.94% [95% CI, -1.19 to -0.69]; 3 years, -0.38% [95% CI, -0.64 to -0.12] and visceral fat storage after 1 year, -126 g [95% CI, -179 to -73.3 g]; 3 years, -70.4 g [95% CI, -126 to -15.2 g] and greater increases in the percentage of total lean mass at 1 year, 0.88% [95% CI, 0.63%-1.12%]; 3-years 0.34% [95% CI, 0.09%-0.60%]). The intervention group was more likely to show improvements of 5% or more in baseline body components (absolute risk reduction after 1 year, 13% for total fat mass, 11% for total lean mass, and 14% for visceral fat mass; after 3-years: 6% for total fat mass, 6% for total lean mass, and 8% for visceral fat mass). The number of participants needed to treat was between 12 and 17 to attain at least 1 individual with possibly clinically meaningful improvements in body composition. Conclusions and relevance: The findings of this trial suggest a weight-loss lifestyle intervention based on an energy-reduced MedDiet and physical activity significantly reduced total and visceral fat and attenuated age-related losses of lean mass in older adults with overweight or obesity and metabolic syndrome. Continued follow-up is warranted to confirm the long-term consequences of these changes on cardiovascular clinical end points

    Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-Plus trial

    Get PDF
    Background Sarcopenia is a progressive age-related skeletal muscle disorder associated with increased likelihood of adverse outcomes. Muscle wasting is often accompanied by an increase in body fat, leading to ‘sarcopenic obesity’. The aim of the present study was to analyse the association of lifestyle variables such as diet, dietary components, physical activity (PA), body composition, and inflammatory markers, with the risk of sarcopenic obesity. Methods A cross-sectional analysis based on baseline data from the PREDIMED-Plus study was performed. A total of 1535 participants (48% women) with overweight/obesity (body mass index: 32.5 ± 3.3 kg/m2; age: 65.2 ± 4.9 years old) and metabolic syndrome were categorized according to sex-specific tertiles (T) of the sarcopenic index (SI) as assessed by dual-energy X-ray absorptiometry scanning. Anthropometrical measurements, biochemical markers, dietary intake, and PA information were collected. Linear regression analyses were carried out to evaluate the association between variables. Results Subjects in the first SI tertile were older, less physically active, showed higher frequency of abdominal obesity and diabetes, and consumed higher saturated fat and less vitamin C than subjects from the other two tertiles (all P < 0.05). Multiple adjusted linear regression models evidenced significant positive associations across tertiles of SI with adherence to the Mediterranean dietary score (P-trend < 0.05), PA (P-trend < 0.0001), and the 30 s chair stand test (P-trend < 0.0001), whereas significant negative associations were found with an inadequate vitamin C consumption (P-trend < 0.05), visceral fat and leucocyte count (all P-trend < 0.0001), and some white cell subtypes (neutrophils and monocytes), neutrophil-to-lymphocyte ratio, and platelet count (all P-trend < 0.05). When models were additionally adjusted by potential mediators (inflammatory markers, diabetes, and waist circumference), no relevant changes were observed, only dietary variables lost significance. Conclusions Diet and PA are important regulatory mediators of systemic inflammation, which is directly involved in the sarcopenic process. A healthy dietary pattern combined with exercise is a promising strategy to limit age-related sarcopenia

    Associations between dietary polyphenols and type 2 diabetes in a cross-sectional analysis of the PREDIMED-plus trial: Role of body mass index and sex

    No full text
    Overweight and obesity are important risk factors for type 2 diabetes (T2D). Moving towards healthier diets, namely, diets rich in bioactive compounds, could decrease the odds of suffering T2D. However, those individuals with high body mass index (BMI) may have altered absorption or metabolism of some nutrients and dietary components, including polyphenols. Therefore, we aimed to assess whether high intakes of some classes of polyphenols are associated with T2D in a population with metabolic syndrome and how these associations depend on BMI and sex. This baseline cross-sectional analysis includes 6633 participants from the PREDIMED-Plus trial. Polyphenol intakes were calculated from food frequency questionnaires (FFQ). Cox regression models with constant time at risk and robust variance estimators were used to estimate the prevalence ratios (PRs) for polyphenol intake and T2D prevalence using the lowest quartile as the reference group. Analyses were stratified by sex and BMI groups (overweight and obese) to evaluate potential effect modification. Catechins, proanthocyanidins, hydroxybenzoic acids, and lignans were inversely associated with T2D. Hydroxycinnamic acids were directly related in men. These associations were different depending on sex and BMI, that is, women and overweight obtained stronger inverse association

    Associations between dietary polyphenols and type 2 diabetes in a cross-sectional analysis of the PREDIMED-plus trial: Role of body mass index and sex

    No full text
    Overweight and obesity are important risk factors for type 2 diabetes (T2D). Moving towards healthier diets, namely, diets rich in bioactive compounds, could decrease the odds of suffering T2D. However, those individuals with high body mass index (BMI) may have altered absorption or metabolism of some nutrients and dietary components, including polyphenols. Therefore, we aimed to assess whether high intakes of some classes of polyphenols are associated with T2D in a population with metabolic syndrome and how these associations depend on BMI and sex. This baseline cross-sectional analysis includes 6633 participants from the PREDIMED-Plus trial. Polyphenol intakes were calculated from food frequency questionnaires (FFQ). Cox regression models with constant time at risk and robust variance estimators were used to estimate the prevalence ratios (PRs) for polyphenol intake and T2D prevalence using the lowest quartile as the reference group. Analyses were stratified by sex and BMI groups (overweight and obese) to evaluate potential effect modification. Catechins, proanthocyanidins, hydroxybenzoic acids, and lignans were inversely associated with T2D. Hydroxycinnamic acids were directly related in men. These associations were different depending on sex and BMI, that is, women and overweight obtained stronger inverse association
    corecore