1,952 research outputs found

    Strong reduction of field-dependent microwave surface resistance in YBa2_{2}Cu3_{3}O7δ_{7-\delta} with sub-micrometric BaZrO3_3 inclusions

    Full text link
    We observe a strong reduction of the field induced thin film surface resistance measured at high microwave frequency (ν=\nu=47.7 GHz) in YBa2_{2}Cu3_{3}O7δ_{7-\delta} thin films grown on SrTiO3_3 substrates, as a consequence of the introduction of sub-micrometric BaZrO3_3 particles. The field increase of the surface resistance is smaller by a factor of \sim3 in the film with BaZrO3_3 inclusions, while the zero-field properties are not much affected. Combining surface resistance and surface reactance data we conclude (a) that BaZrO3_3 inclusions determine very deep and steep pinning wells and (b) that the pinning changes nature with respect to the pure film.Comment: RevTeX; 4 pages, 3 figures; submitted to Applied Physics Letter

    Reduction of the field-dependent microwave surface resistance in YBa_2Cu_3O_7 with sub-micrometric BaZrO_3 inclusions as a function of BaZrO_3 concentration

    Full text link
    In order to study the vortex pinning determined by artificially introduced pinning centers in the small-vortex displacement regime, we measured the microwave surface impedance at 47.7 GHz in the mixed state of YBa2_{2}Cu3_{3}O7δ_{7-\delta} thin films, where sub-micrometric BaZrO3_3 particles have been incorporated. As a function of the BaZrO3_3 content, we observe that the absolute losses slightly decrease up to a BaZrO3_3 content of 5%, and then increase. We found that the magnetic-field-induced losses behave differently, in that they are not monotonic with increasing BaZrO3_3 concentration: at small concentration (2.5%) the field-induced losses increase, but large reduction of the losses themselves, by factors up to 3, is observed upon further increasing the BaZrO3_3 concentration in the target up to 7%. Using measurements of both surface resistance and surface reactance we estimate vortex pinning-related parameters. We find that BaZrO3_3 inclusions introduce deep and steep pinning wells. In particular, the minimum height of the energy barrier for single vortices is raised. At larger BaZrO3_3 content (5% and 7%) the phenomenon is at its maximum, but it is unclear whether it shows a saturation or not, thus leaving room for further improvements.Comment: 7 pages, 7 figure

    Strong Reduction of the Field-Dependent Microwave Surface Resistance in YBCO with BaZrO_3 Inclusions

    Full text link
    We present measurements of the magnetic field dependent microwave surface resistance in laser-ablated YBa2_2Cu3_3O7δ_{7-\delta} films on SrTiO3_3 substrates. BaZrO3_3 crystallites were included in the films using composite targets containing BaZrO3_3 inclusions with mean grain size smaller than 1 μ\mum. X-ray diffraction showed single epitaxial relationship between BaZrO3_3 and YBa2_2Cu3_3O7δ_{7-\delta}. The effective surface resistance was measured at 47.7 GHz for 60<T<< T <90 K and 0<μ0H<< \mu_0H <0.8 T. The magnetic field had a very different effect on pristine YBa2_2Cu3_3O7δ_{7-\delta} and YBa2_2Cu3_3O7δ_{7-\delta}/BaZrO3_3, while for μ0H=\mu_0H=0 only a reduction of TcT_c in the YBa2_2Cu3_3O7δ_{7-\delta}/BaZrO3_3 film was observed, consistent with dc measurements. At low enough TT, in moderate fields YBa2_2Cu3_3O7δ_{7-\delta}/BaZrO3_3 exhibited an intrinsic thin film resistance lower than the pure film. The results clearly indicate that BaZrO3_3 inclusions determine a strong reduction of the field-dependent surface resistance. From the analysis of the data in the framework of simple models for the microwave surface impedance in the mixed state we argue that BaZrO3_3 inclusions determine very steep pinning potentials.Comment: LaTeX, 6 pages, 4 figures, uses jpconf.cls and jpconf11.clo class files, talk given at EUCAS 2007, submitted to J. Phys.: Conf. Serie

    Effect of nanosize BaZrO3 inclusions on vortex parameters in YBaCuO

    Full text link
    We report on the field dependence of the microwave complex resistivity data in YBa2_2Cu3_3O7x_{7-x}/BaZrO3_3 films grown by PLD at various BaZrO3_3 content. The data, analyzed within a recently developed general framework for the mixed-state microwave response of superconductors, yield the field dependence of the fluxon parameters such as the vortex viscosity and the pinning constant. We find that pinning undergoes a change of regime when the BaZrO3_3 content in the target increases from 2.5 mol.% to 5 mol.%. Simultaneously, the vortex viscosity becomes an increasing function of the applied magnetic field. We propose a scenario in which flux lines are pinned as bundles, and a crossover from dilute point pins to dense c-axis correlated defects takes place between 2.5 and 5 mol.% in the BZO concentration. Our data are inconsistent with vortices occupying mainly the BaZrO3_3 sites at low fields, and suggest instead that vortices occupy both BaZrO3_3 sites and interstitials in the YBa2_2Cu3_3O7x_{7-x} matrix, even at low fields.Comment: Presented at EUCAS 2009, to be published in J. Phys.:Conf. Serie

    Parallel processing in immune networks

    Full text link
    In this work we adopt a statistical mechanics approach to investigate basic, systemic features exhibited by adaptive immune systems. The lymphocyte network made by B-cells and T-cells is modeled by a bipartite spin-glass, where, following biological prescriptions, links connecting B-cells and T-cells are sparse. Interestingly, the dilution performed on links is shown to make the system able to orchestrate parallel strategies to fight several pathogens at the same time; this multitasking capability constitutes a remarkable, key property of immune systems as multiple antigens are always present within the host. We also define the stochastic process ruling the temporal evolution of lymphocyte activity, and show its relaxation toward an equilibrium measure allowing statistical mechanics investigations. Analytical results are compared with Monte Carlo simulations and signal-to-noise outcomes showing overall excellent agreement. Finally, within our model, a rationale for the experimentally well-evidenced correlation between lymphocytosis and autoimmunity is achieved; this sheds further light on the systemic features exhibited by immune networks.Comment: 21 pages, 9 figures; to appear in Phys. Rev.

    Angular dependence of the high-frequency vortex response in YBa2_2Cu3_3O7x_{7-x} thin film with self-assembled BaZrO3_3 nanorods

    Full text link
    We present a microwave study of the angular dependence of the flux-flow resistivity ρff\rho_{ff} and of the pinning constant kpk_p in YBCO thin films containing BZO nanorods. We find that BZO nanorods are very efficient pinning centers, even in tilted fields. We find that ρff\rho_{ff} is a scaling function of a reduced field H/f(θ)H/f(\theta). We extend a model for the anisotropic motion of vortices in uniaxially anisotropic superconductor, able to describe the experimental f(θ)f(\theta) on the basis of only the intrinsic anisotropy of YBCO. The pinning constant kpk_p, by contrast, exhibits different field dependences in different angular ranges, consistent with pinning by BZO at angles as large as 60^{\circ}, and with pinning along the a,ba,b planes as originating from the same mechanism as in pure YBCO with the field along the c axis.Comment: 5 pages, 3 figure

    The Geometry and Moduli of K3 Surfaces

    Get PDF
    These notes will give an introduction to the theory of K3 surfaces. We begin with some general results on K3 surfaces, including the construction of their moduli space and some of its properties. We then move on to focus on the theory of polarized K3 surfaces, studying their moduli, degenerations and the compactification problem. This theory is then further enhanced to a discussion of lattice polarized K3 surfaces, which provide a rich source of explicit examples, including a large class of lattice polarizations coming from elliptic fibrations. Finally, we conclude by discussing the ample and Kahler cones of K3 surfaces, and give some of their applications.Comment: 34 pages, 2 figures. (R. Laza, M. Schutt and N. Yui, eds.

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer
    corecore