848 research outputs found
Spin transport in inhomogeneous magnetic fields: a proposal for Stern-Gerlach-like experiments with conduction electrons
Spin dynamics in spatially inhomogeneous magnetic fields is studied within
the framework of Boltzmann theory. Stern-Gerlach-like separation of spin up and
spin down electrons occurs in ballistic and diffusive regimes, before spin
relaxation sets in. Transient dynamics and spectral response to time-dependent
inhomogeneous magnetic fields are investigated, and possible experimental
observations of our findings are discussed.Comment: 7 pages, 4 figures; revised and extended version, to appear in PR
New quick method for isolating RNA from laser captured cells stained by immunofluorescent immunohistochemistry; RNA suitable for direct use in fluorogenic TaqMan one-step real-time RT-PCR
We describe a new approach for reliably isolating one-step real-time quantitative RT-PCR-quality RNA from laser captured cells retrieved from frozen sections previously subjected to immunofluorescent immunohistochemistry (IF-IHC) and subsequently subjected to fluorogenic one-step real-time RT-PCR analysis without the need for costly, time-consuming linear amplification. One cell’s worth of RNA can now be interrogated with confidence. This approach represents an amalgam of technologies already offered commercially by Applied Biosystems, Arcturus and Invitrogen. It is the primary focus of this communication to expose the details and execution of an important new LCM RNA isolation technique, but also provide a detailed account of the IF-IHC procedure preceding RNA isolation, and provide information regarding our approach to fluorogenic one-step real-time RT-PCR in general. Experimental results shown here are meant to supplement the primary aim and are not intended to represent a complete scientific study. It is important to mention, that since LCM-RT-PCR is still far less expensive than micro-array analysis, we feel this approach to isolating RNA from LCM samples will be of continuing use to many researchers with limited budgets in the years ahead
Bonding, Moment Formation, and Magnetic Interactions in Ca14MnBi11 and Ba14MnBi11
The ``14-1-11'' phase compounds based on magnetic Mn ions and typified by
Ca14MnBi11 and Ba14MnBi11 show unusual magnetic behavior, but the large number
(104) of atoms in the primitive cell has precluded any previous full electronic
structure study. Using an efficient, local orbital based method within the
local spin density approximation to study the electronic structure, we find a
gap between a bonding valence band complex and an antibonding conduction band
continuum. The bonding bands lack one electron per formula unit of being
filled, making them low carrier density p-type metals. The hole resides in the
MnBi4 tetrahedral unit and partially compensates the high spin d^5 Mn moment,
leaving a net spin near 4 \mu_B that is consistent with experiment. These
manganites are composed of two disjoint but interpenetrating `jungle gym'
networks of spin 4/2 MnBi4^{9-} units with ferromagnetic interactions within
the same network, and weaker couplings between the networks whose sign and
magnitude is sensitive to materials parameters. Ca14MnBi11 is calculated to be
ferromagnetic as observed, while for Ba14MnBi11 (which is antiferromagnetic)
the ferro- and antiferromagnetic states are calculated to be essentially
degenerate. The band structure of the ferromagnetic states is very close to
half metallic.Comment: 17 pages, containing 10 postscript figures and 5 tables. Two
additional figures (Fig.8 and 11 of the paper) are provided in JPG format in
separate files. Submitted to Phys. Rev. B on September 20th 200
Research Chimpanzees May Get a Break
A recent report by the Institute of Medicine leaves few urgent reasons standing for the continued use of chimpanzees in biomedical research. It is high time to think about their retirement, Frans de Waal argues, without neglecting prospects for non-invasive research on behavior, cognition, and genetics
Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system 'FocusField2-6GallupqPCRSet-upTool-001' to attain consistently high fidelity qPCR reactions
The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional
- …