3,490 research outputs found
Artificial neural network prediction of weld distortion rectification using a travelling induction coil
An experimental investigation has been carried out to determine the applicability of an induction heating process with a travelling induction coil for the rectification of angular welding distortion. The results obtained from experimentation have been used to create artificial neural network models with the ability to predict the welding induced distortion and the distortion rectification achieved using a travelling induction coil. The experimental results have shown the ability to reduce the angular distortion for 8 mm and 10 mm thick DH36 steel plate and effectively eliminate the distortion on 6 mm thick plate. Results for 6 mm plate also show the existence of a critical induction coil travel speed at which maximum corrective bending occurs. Artificial neural networks have demonstrated the ability to predict the final distortion of the plate after both welding and induction heating. The models have also been used as a tool to determine the optimum speed to minimise the resulting distortion of steel plate after being subjected to both welding and induction heating processes
The Cosmic Censor Forbids Naked Topology
For any asymptotically flat spacetime with a suitable causal structure
obeying (a weak form of) Penrose's cosmic censorship conjecture and satisfying
conditions guaranteeing focusing of complete null geodesics, we prove that
active topological censorship holds. We do not assume global hyperbolicity, and
therefore make no use of Cauchy surfaces and their topology. Instead, we
replace this with two underlying assumptions concerning the causal structure:
that no compact set can signal to arbitrarily small neighbourhoods of spatial
infinity (``-avoidance''), and that no future incomplete null geodesic is
visible from future null infinity. We show that these and the focusing
condition together imply that the domain of outer communications is simply
connected. Furthermore, we prove lemmas which have as a consequence that if a
future incomplete null geodesic were visible from infinity, then given our
-avoidance assumption, it would also be visible from points of spacetime
that can communicate with infinity, and so would signify a true naked
singularity.Comment: To appear in CQG, this improved version contains minor revisions to
incorporate referee's suggestions. Two revised references. Plain TeX, 12
page
On the Gannon-Lee Singularity Theorem in Higher Dimensions
The Gannon-Lee singularity theorems give well-known restrictions on the
spatial topology of singularity-free (i.e., nonspacelike geodesically
complete), globally hyperbolic spacetimes. In this paper, we revisit these
classic results in the light of recent developments, especially the failure in
higher dimensions of a celebrated theorem by Hawking on the topology of black
hole horizons. The global hyperbolicity requirement is weakened, and we expand
the scope of the main results to allow for the richer variety of spatial
topologies which are likely to occur in higher-dimensional spacetimes.Comment: 13 pages, no figures, to appear in Class. Quantum Gra
Rigid Singularity Theorem in Globally Hyperbolic Spacetimes
We show the rigid singularity theorem, that is, a globally hyperbolic
spacetime satisfying the strong energy condition and containing past trapped
sets, either is timelike geodesically incomplete or splits isometrically as
space time. This result is related to Yau's Lorentzian splitting
conjecture.Comment: 3 pages, uses revtex.sty, to appear in Physical Review
Techno-economic evaluation of reducing shielding gas consumption in GMAW whilst maintaining weld quality
A new method of supplying shielding gases in an alternating manner has been developed to enhance the efficiency of conventional gas metal arc welding (GMAW). However, the available literature on this advanced joining process is very sparse and no cost evaluation has been reported to date. In simple terms, the new method involves discretely supplying two different shielding gases to the weld pool at predetermined frequencies which creates a dynamic action within the liquid pool. In order to assess the potential benefits of this new method from a technical and cost perspective, a comparison has been drawn between the standard shielding gas composition of Ar/20%CO2, which is commonly used in UK and European shipbuilding industries for carbon steels, and a range of four different frequencies alternating between Ar/20%CO2 and helium. The beneficial effects of supplying the weld shielding gases in an alternating manner were found to provide attractive benefits for the manufacturing community. For example, the present study showed that compared with conventional GMAW, a 17 per cent reduction in total welding cost was achieved in the case of the alternating gas method and savings associated with a reduction in the extent of post-weld straightening following plate distortion were also identified. Also, the mechanical properties of the alternating case highlighted some marginal improvements in strength and Charpy impact toughness which were attributed to a more refined weld microstructure
Evidence for a parsec scale X-ray jet from the accreting neutron star Circinus X-1
We analyzed the zero-order image of a 50 ks Chandra gratings observation of
Circinus X-1, taken in 2005 during the source's low-flux state. Circinus X-1 is
an accreting neutron star that exhibits ultra-relativistic arcsecond-scale
radio jets and diffuse arcminute-scale radio jets and lobes. The image shows a
clear excess along the general direction of the north-western counter-jet,
coincident with the radio emission, suggesting that it originates either in the
jet itself or in the shock the jet is driving into its environment. This makes
Circinus X-1 the first neutron star for which an extended X-ray jet has been
detected. The kinetic jet power we infer is significantly larger than the
minimum power required for the jet to inflate the large scale radio nebula.Comment: Added journal reference, corrected on reference and typo in labels
for Fig. 1; 5 pages, 3 figures, ApJ Letter, in pres
Accreting millisecond X-ray pulsars: 10 years of INTEGRAL observations
During the last 10 years, INTEGRAL made a unique contribution to the study of
accreting millisecond X-ray pulsars (AMXPs), discovering three of the 14
sources now known of this class. Besides increasing the number of known AMXPs,
INTEGRAL also carried out observations of these objects above 20 keV,
substantially advancing our understanding of their behaviour. We present here a
review of all the AMXPs observed with INTEGRAL and discuss the physical
interpretation of their behaviour in the X-ray domain. We focus in particular
on the lightcurve profile during outburst, as well as the timing, spectral, and
thermonuclear type-I X-ray bursts properties.Comment: 8 pages, 8 figures. Proceedings of "An INTEGRAL view of the
high-energy sky (the first 10 years)" the 9th INTEGRAL Workshop, October
15-19, 2012, Paris, Franc
Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO_x conditions
We present first-generation and total production yields of glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone from the oxidation of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) with OH under high NO_x conditions. Several of these first-generation yields are not included in commonly used chemical mechanisms, such as the Leeds Master Chemical Mechanism (MCM) v. 3.2. The first-generation yield of glyoxal from isoprene was determined to be 2.1 (±0.6)%. Inclusion of first-generation production of glyoxal, glycolaldehyde and hydroxyacetone from isoprene greatly improves performance of an MCM based model during the initial part of the experiments. In order to further improve performance of the MCM based model, higher generation glyoxal production was reduced by lowering the first-generation yield of glyoxal from C5 hydroxycarbonyls. The results suggest that glyoxal production from reaction of OH with isoprene under high NO_x conditions can be approximated by inclusion of a first-generation production term together with secondary production only via glycolaldehyde. Analogously, methylglyoxal production can be approximated by a first-generation production term from isoprene, and secondary production via MVK, MACR and hydroxyacetone. The first-generation yields reported here correspond to less than 5% of the total oxidized yield from isoprene and thus only have a small effect on the fate of isoprene. However, due to the abundance of isoprene, the combination of first-generation yields and reduced higher generation production of glyoxal from C5 hydroxycarbonyls is important for models that include the production of the small organic molecules from isoprene
A uniqueness theorem for the adS soliton
The stability of physical systems depends on the existence of a state of
least energy. In gravity, this is guaranteed by the positive energy theorem.
For topological reasons this fails for nonsupersymmetric Kaluza-Klein
compactifications, which can decay to arbitrarily negative energy. For related
reasons, this also fails for the AdS soliton, a globally static, asymptotically
toroidal spacetime with negative mass. Nonetheless, arguing from
the AdS/CFT correspondence, Horowitz and Myers (hep-th/9808079) proposed a new
positive energy conjecture, which asserts that the AdS soliton is the unique
state of least energy in its asymptotic class. We give a new structure theorem
for static spacetimes and use it to prove uniqueness of the AdS
soliton. Our results offer significant support for the new positive energy
conjecture and add to the body of rigorous results inspired by the AdS/CFT
correspondence.Comment: Revtex, 4 pages; Matches published version. More detail in Abstract
and one equation corrected. For details of proofs and further results, see
hep-th/020408
- …