4 research outputs found

    Could climate change benefit invasive snakes? Modelling the potential distribution of the California Kingsnake in the Canary Islands

    Get PDF
    The interaction between climate change and biological invasions is a global conservation challenge with major consequences for invasive species management. However, our understanding of this interaction has substantial knowledge gaps; this is particularly relevant for invasive snakes on islands because they can be a serious threat to island ecosystems. Here we evaluated the potential influence of climate change on the distribution of invasive snakes on islands, using the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria. We analysed the potential distribution of L. californiae under current and future climatic conditions in the Canary Islands, with the underlying hypothesis that the archipelago might be suitable for the species under these climate scenarios. Our results indicate that the Canary Islands are currently highly suitable for the invasive snake, with increased suitability under the climate change scenarios tested here. This study supports the idea that invasive reptiles represent a substantial threat to near-tropical regions, and builds on previous studies suggesting that the menace of invasive reptiles may persist or even be exacerbated by climate change. We suggest future research should continue to fill the knowledge gap regarding invasive reptiles, in particular snakes, to clarify their potential future impacts on global biodiversity

    Snakes on an island: independent introductions have different potentials for invasion

    No full text
    Snakes introduced to islands can be devastating to naïve native fauna. However, introduced populations must establish before range expansion (invasion) can occur. The factors that can determine successful invasion are those associated with the introduction event (e.g., characteristics of the founding population), the location (e.g., suitable environment and prey availability) and the species (e.g. life history characteristics). Here, we collected morphometric, ecological and genetic data on the recently introduced California Kingsnake (Lampropeltis californiae) in Gran Canaria. We found that snakes occurring at two locations a few 10 s of km apart do not represent the same population. Genetic analyses confirmed significant genetic difference (FST = 0.184; Dest = 0.341), and that despite being inbred (Fis = 0.245–0.257) the populations had high levels of diversity (Ho = 0.485–0.490; allelic richness = 4.875–6.364). Snakes at the different Gran Canaria locations were significantly different in morphology (colouration, mass, length and age), fitness (egg production) and diet (rodents, skinks, lizards and geckos), supporting a hypothesis of separate founding groups in combination with local environmental heterogeneity leading to variation between these populations. We concluded that one population was more successful than the other in reproduction and recruitment, and may be having a greater impact on endemic reptiles. We recommend greater eradication effort for this population, as well as monitoring of local fauna at all locations to access the impact of predation
    corecore