13,367 research outputs found

    Double dynamical regime of confined water

    Full text link
    The Van Hove self correlation function of water confined in a silica pore is calculated from Molecular Dynamics trajectories upon supercooling. At long time in the α\alpha relaxation region we found that the behaviour of the real space time dependent correlators can be decomposed in a very slow, almost frozen, dynamics due to the bound water close to the substrate and a faster dynamics of the free water which resides far from the confining surface. For free water we confirm the evidences of an approach to a crossover mode coupling transition, previously found in Q space. In the short time region we found that the two dynamical regimes are overimposed and cannot be distinguished. This shows that the interplay between the slower and the faster dynamics emerges in going from early times to the α\alpha relaxation region, where a layer analysis of the dynamical properties can be performed.Comment: 6 pages with 9 figures. RevTeX. Accepted for pulbication in J. Phys. Cond. Mat

    Irredundant Triangular Decomposition

    Full text link
    Triangular decomposition is a classic, widely used and well-developed way to represent algebraic varieties with many applications. In particular, there exist sharp degree bounds for a single triangular set in terms of intrinsic data of the variety it represents, and powerful randomized algorithms for computing triangular decompositions using Hensel lifting in the zero-dimensional case and for irreducible varieties. However, in the general case, most of the algorithms computing triangular decompositions produce embedded components, which makes it impossible to directly apply the intrinsic degree bounds. This, in turn, is an obstacle for efficiently applying Hensel lifting due to the higher degrees of the output polynomials and the lower probability of success. In this paper, we give an algorithm to compute an irredundant triangular decomposition of an arbitrary algebraic set WW defined by a set of polynomials in C[x_1, x_2, ..., x_n]. Using this irredundant triangular decomposition, we were able to give intrinsic degree bounds for the polynomials appearing in the triangular sets and apply Hensel lifting techniques. Our decomposition algorithm is randomized, and we analyze the probability of success

    Incoherent transient radio emission from stellar-mass compact objects in the SKA era

    Full text link
    The universal link between the processes of accretion and ejection leads to the formation of jets and outflows around accreting compact objects. Incoherent synchrotron emission from these outflows can be observed from a wide range of accreting binaries, including black holes, neutron stars, and white dwarfs. Monitoring the evolution of the radio emission during their sporadic outbursts provides important insights into the launching of jets, and, when coupled with the behaviour of the source at shorter wavelengths, probes the underlying connection with the accretion process. Radio observations can also probe the impact of jets/outflows (including other explosive events such as magnetar giant flares) on the ambient medium, quantifying their kinetic feedback. The high sensitivity of the SKA will open up new parameter space, enabling the monitoring of accreting stellar-mass compact objects from their bright, Eddington-limited outburst states down to the lowest-luminosity quiescent levels, whose intrinsic faintness has to date precluded detailed studies. A census of quiescently accreting black holes will also constrain binary evolution processes. By enabling us to extend our existing investigations of black hole jets to the fainter jets from neutron star and white dwarf systems, the SKA will permit comparative studies to determine the role of the compact object in jet formation. The high sensitivity, wide field of view and multi-beaming capability of the SKA will enable the detection and monitoring of all bright flaring transients in the observable local Universe, including the ULXs, ... [Abridged] This chapter reviews the science goals outlined above, demonstrating the progress that will be made by the SKA. We also discuss the potential of the astrometric and imaging observations that would be possible should a significant VLBI component be included in the SKA.Comment: To be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14

    Thermodynamic behaviour and structural properties of an aqueous sodium chloride solution upon supercooling

    Full text link
    We present the results of a molecular dynamics simulation study of thermodynamic and structural properties upon supercooling of a low concentration sodium chloride solution in TIP4P water and the comparison with the corresponding bulk quantities. We study the isotherms and the isochores for both the aqueous solution and bulk water. The comparison of the phase diagrams shows that thermodynamic properties of the solution are not merely shifted with respect to the bulk. Moreover, from the analysis of the thermodynamic curves, both the spinodal line and the temperatures of maximum density curve can be calculated. The spinodal line appears not to be influenced by the presence of ions at the chosen concentration, while the temperatures of maximum density curve displays both a mild shift in temperature and a shape modification with respect to bulk. Signatures of the presence of a liquid-liquid critical point are found in the aqueous solution. By analysing the water-ion radial distribution functions of the aqueous solution we observe that upon changing density, structural modifications appear close to the spinodal. For low temperatures additional modifications appear also for densities close to that corresponding to a low density configurational energy minimum.Comment: 10 pages, 13 figures, 2 tables. To be published in J. Chem. Phy

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform

    Microclimate in coffee plantation grown under grevillea trees shading.

    Get PDF
    Microclima de café arborizado com grevílea. Medições de radiação solar global, velocidade do vento, temperatura e umidade relativa do ar, foram realizadas em um cafezal (Coffea arabica L.) cv. Icatu Vermelho IAC 4045, cultivado a pleno sol e arborizado com grevílea (Grevillea robusta), no município de Mococa ? SP (21º 28? S, 47º 01? W, altitude 665 m) entre janeiro e dezembro de 2005, com o objetivo de apresentar os efeitos do cultivo arborizado no microclima. Os resultados obtidos mostraram que houve atenuação média dos valores de radiação solar global, em cultivo de café arborizado, em 26%, com variação mensal de 24 a 30%. Pela descontinuidade da cobertura das árvores de grevílea, foi verificada diferença de transmissão da radiação solar em diferentes pontos do sistema arborizado. Foi verificada ainda redução média de 35% nas médias quinquidiais da velocidade do vento no cultivo arborizado em relação ao cultivo a pleno sol. O cultivo arborizado promoveu redução na temperatura máxima do ar e no déficit de saturação de vapor no período diurno, sendo essas reduções mais evidentes no ponto amostral próximo à árvore de grevílea
    corecore