1,136 research outputs found

    Modeling Relational Data via Latent Factor Blockmodel

    Full text link
    In this paper we address the problem of modeling relational data, which appear in many applications such as social network analysis, recommender systems and bioinformatics. Previous studies either consider latent feature based models but disregarding local structure in the network, or focus exclusively on capturing local structure of objects based on latent blockmodels without coupling with latent characteristics of objects. To combine the benefits of the previous work, we propose a novel model that can simultaneously incorporate the effect of latent features and covariates if any, as well as the effect of latent structure that may exist in the data. To achieve this, we model the relation graph as a function of both latent feature factors and latent cluster memberships of objects to collectively discover globally predictive intrinsic properties of objects and capture latent block structure in the network to improve prediction performance. We also develop an optimization transfer algorithm based on the generalized EM-style strategy to learn the latent factors. We prove the efficacy of our proposed model through the link prediction task and cluster analysis task, and extensive experiments on the synthetic data and several real world datasets suggest that our proposed LFBM model outperforms the other state of the art approaches in the evaluated tasks.Comment: 10 pages, 12 figure

    Probabilistic Latent Tensor Factorization Model for Link Pattern Prediction in Multi-relational Networks

    Full text link
    This paper aims at the problem of link pattern prediction in collections of objects connected by multiple relation types, where each type may play a distinct role. While common link analysis models are limited to single-type link prediction, we attempt here to capture the correlations among different relation types and reveal the impact of various relation types on performance quality. For that, we define the overall relations between object pairs as a \textit{link pattern} which consists in interaction pattern and connection structure in the network, and then use tensor formalization to jointly model and predict the link patterns, which we refer to as \textit{Link Pattern Prediction} (LPP) problem. To address the issue, we propose a Probabilistic Latent Tensor Factorization (PLTF) model by introducing another latent factor for multiple relation types and furnish the Hierarchical Bayesian treatment of the proposed probabilistic model to avoid overfitting for solving the LPP problem. To learn the proposed model we develop an efficient Markov Chain Monte Carlo sampling method. Extensive experiments are conducted on several real world datasets and demonstrate significant improvements over several existing state-of-the-art methods.Comment: 19pages, 5 figure

    Text Classification: A Sequential Reading Approach

    Full text link
    We propose to model the text classification process as a sequential decision process. In this process, an agent learns to classify documents into topics while reading the document sentences sequentially and learns to stop as soon as enough information was read for deciding. The proposed algorithm is based on a modelisation of Text Classification as a Markov Decision Process and learns by using Reinforcement Learning. Experiments on four different classical mono-label corpora show that the proposed approach performs comparably to classical SVM approaches for large training sets, and better for small training sets. In addition, the model automatically adapts its reading process to the quantity of training information provided.Comment: ECIR201

    Copy mechanism and tailored training for character-based data-to-text generation

    Full text link
    In the last few years, many different methods have been focusing on using deep recurrent neural networks for natural language generation. The most widely used sequence-to-sequence neural methods are word-based: as such, they need a pre-processing step called delexicalization (conversely, relexicalization) to deal with uncommon or unknown words. These forms of processing, however, give rise to models that depend on the vocabulary used and are not completely neural. In this work, we present an end-to-end sequence-to-sequence model with attention mechanism which reads and generates at a character level, no longer requiring delexicalization, tokenization, nor even lowercasing. Moreover, since characters constitute the common "building blocks" of every text, it also allows a more general approach to text generation, enabling the possibility to exploit transfer learning for training. These skills are obtained thanks to two major features: (i) the possibility to alternate between the standard generation mechanism and a copy one, which allows to directly copy input facts to produce outputs, and (ii) the use of an original training pipeline that further improves the quality of the generated texts. We also introduce a new dataset called E2E+, designed to highlight the copying capabilities of character-based models, that is a modified version of the well-known E2E dataset used in the E2E Challenge. We tested our model according to five broadly accepted metrics (including the widely used BLEU), showing that it yields competitive performance with respect to both character-based and word-based approaches.Comment: ECML-PKDD 2019 (Camera ready version

    Learning Multi-Modal Word Representation Grounded in Visual Context

    Full text link
    Representing the semantics of words is a long-standing problem for the natural language processing community. Most methods compute word semantics given their textual context in large corpora. More recently, researchers attempted to integrate perceptual and visual features. Most of these works consider the visual appearance of objects to enhance word representations but they ignore the visual environment and context in which objects appear. We propose to unify text-based techniques with vision-based techniques by simultaneously leveraging textual and visual context to learn multimodal word embeddings. We explore various choices for what can serve as a visual context and present an end-to-end method to integrate visual context elements in a multimodal skip-gram model. We provide experiments and extensive analysis of the obtained results

    OCReP: An Optimally Conditioned Regularization for Pseudoinversion Based Neural Training

    Full text link
    In this paper we consider the training of single hidden layer neural networks by pseudoinversion, which, in spite of its popularity, is sometimes affected by numerical instability issues. Regularization is known to be effective in such cases, so that we introduce, in the framework of Tikhonov regularization, a matricial reformulation of the problem which allows us to use the condition number as a diagnostic tool for identification of instability. By imposing well-conditioning requirements on the relevant matrices, our theoretical analysis allows the identification of an optimal value for the regularization parameter from the standpoint of stability. We compare with the value derived by cross-validation for overfitting control and optimisation of the generalization performance. We test our method for both regression and classification tasks. The proposed method is quite effective in terms of predictivity, often with some improvement on performance with respect to the reference cases considered. This approach, due to analytical determination of the regularization parameter, dramatically reduces the computational load required by many other techniques.Comment: Published on Neural Network

    Learning States Representations in POMDP

    Full text link
    We propose to deal with sequential processes where only partial observations are available by learning a latent representation space on which policies may be accurately learned.Comment: 4 page

    “Likes” for Self-Love? The Effects of Social Media on Self-Perception

    Get PDF
    Social comparison theory describes how people self-evaluate themselves based on social comparisons to others. The current research investigated whether receiving more “likes” on social media than someone else will cause women to feel better about themselves, whereas receiving fewer “likes” will cause them to feel worse. Previous research has shown that social comparisons using social media, specifically Facebook, does affect levels of self-worth. Research regarding Instagram is limited, which is why it is the focus of this current research. The study included 124 participants, all of whom were women aged 18 to 25. The study consisted of two conditions featuring a manipulated Instagram post. After exposure to the manipulated post, the participants were asked to view a recent post on their Instagram and note the number of “likes,” which was intended to create a social comparison. The participants completed the State Self-Esteem scale to measure feelings of self-esteem. The results showed that comparing “likes” on Instagram did not significantly affect levels of self-esteem. There was a small, positive correlational relationship found between the participants’ own number of “likes” and their levels of appearance self-esteem
    • …
    corecore