81 research outputs found

    Low penetrance of retinoblastoma for p.V654L mutation of the RB1 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinoblastoma is caused by compound heterozygosity or homozygosity of retinoblastoma gene (<it>RB1</it>) mutations. In germline retinoblastoma, mutations in the <it>RB1 </it>gene predispose individuals to increased cancer risks during development. These mutations segregate as autosomal dominant traits with high penetrance (90%).</p> <p>Methods</p> <p>We screened 30 family members from one family using high resolution melting assay and DNA direct sequencing for mutations in the <it>RB1 </it>gene. We evaluate the phenotype and penetrance of germline mutations of the <it>RB1 </it>gene in a large Taiwanese family.</p> <p>Results</p> <p>The molecular analysis and clinical details of this family showed phenotypic variability associated with the p.V654L mutation in exon 19 of the <it>RB1 </it>gene in 11 family members. The phenotype varied from asymptomatic to presence of a unilateral tumor. Only four individuals (2 males and 2 females) developed unilateral retinoblastoma, which resulted in calculated low penetrance of 36% (4/11). The four individuals with retinoblastoma were diagnosed before the age of three years. None of their relatives exhibited variable severity or bilateral retinoblastoma.</p> <p>Conclusions</p> <p>The diseased-eye ratio for this family was 0.36, which is lower than current estimates. This suggests that the <it>RB1 </it>p.V654L mutation is a typical mutation associated with low penetrance.</p

    Regulation of p14ARF expression by miR-24: a potential mechanism compromising the p53 response during retinoblastoma development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most human cancers show inactivation of both pRB- and p53-pathways. While retinoblastomas are initiated by loss of the <it>RB1 </it>tumor suppressor gene, <it>TP53 </it>mutations have not been found. High expression of the p53-antagonist MDM2 in human retinoblastomas may compromise p53 tumor surveillance so that <it>TP53 </it>mutations are not selected for in retinoblastoma tumorigenesis. We previously showed that p14<sup>ARF </sup>protein, which activates p53 by inhibiting MDM2, is low in retinoblastomas despite high mRNA expression.</p> <p>Methods</p> <p>In human fetal retinas, adult retinas, and retinoblastoma cells, we determined endogenous <it>p14<sup>ARF </sup></it>mRNA, ARF protein, and miR-24 expression, while integrity of p53 signalling in WERI-Rb1 cells was tested using an adenovirus vector expressing p14<sup>ARF</sup>. To study p14<sup>ARF </sup>biogenesis, retinoblastoma cells were treated with the proteasome inhibitor, MG132, and siRNA against miR-24.</p> <p>Results</p> <p>In human retinoblastoma cell lines, <it>p14<sup>ARF </sup></it>mRNA was disproportionally high relative to the level of p14<sup>ARF </sup>protein expression, suggesting a perturbation of p14<sup>ARF </sup>regulation. When p14<sup>ARF </sup>was over-expressed by an adenovirus vector, expression of p53 and downstream targets increased and cell growth was inhibited indicating an intact p14<sup>ARF</sup>-p53 axis. To investigate the discrepancy between <it>p14<sup>ARF </sup></it>mRNA and protein in retinoblastoma, we examined p14<sup>ARF </sup>biogenesis. The proteasome inhibitor, MG132, did not cause p14<sup>ARF </sup>accumulation, although p14<sup>ARF </sup>normally is degraded by proteasomes. miR-24, a microRNA that represses p14<sup>ARF </sup>expression, is expressed in retinoblastoma cell lines and correlates with lower protein expression when compared to other cell lines with high <it>p14<sup>ARF </sup></it>mRNA. Transient over-expression of siRNA against miR-24 led to elevated p14<sup>ARF </sup>protein in retinoblastoma cells.</p> <p>Conclusions</p> <p>In retinoblastoma cells where high levels of <it>p14<sup>ARF </sup></it>mRNA are not accompanied by high p14<sup>ARF </sup>protein, we found a correlation between miR-24 expression and low p14<sup>ARF </sup>protein. p14<sup>ARF </sup>protein levels were restored without change in mRNA abundance upon miR-24 inhibition suggesting that miR-24 could functionally repress expression, effectively blocking p53 tumor surveillance. During retinal tumorigenesis, miR-24 may intrinsically compromise the p53 response to <it>RB1 </it>loss.</p

    Cdh11 Acts as a Tumor Suppressor in a Murine Retinoblastoma Model by Facilitating Tumor Cell Death

    Get PDF
    CDH11 gene copy number and expression are frequently lost in human retinoblastomas and in retinoblastomas arising in TAg-RB mice. To determine the effect of Cdh11 loss in tumorigenesis, we crossed Cdh11 null mice with TAg-RB mice. Loss of Cdh11 had no gross morphological effect on the developing retina of Cdh11 knockout mice, but led to larger retinal volumes in mice crossed with TAg-RB mice (p = 0.01). Mice null for Cdh11 presented with fewer TAg-positive cells at postnatal day 8 (PND8) (p = 0.01) and had fewer multifocal tumors at PND28 (p = 0.016), compared to mice with normal Cdh11 alleles. However, tumor growth was faster in Cdh11-null mice between PND8 and PND84 (p = 0.003). In tumors of Cdh11-null mice, cell death was decreased 5- to 10-fold (p<0.03 for all markers), while proliferation in vivo remained unaffected (p = 0.121). Activated caspase-3 was significantly decreased and β-catenin expression increased in Cdh11 knockdown experiments in vitro. These data suggest that Cdh11 displays tumor suppressor properties in vivo and in vitro in murine retinoblastoma through promotion of cell death

    Efficient Translation of Pelargonium line pattern virus RNAs Relies on a TED-Like 3 '-Translational Enhancer that Communicates with the Corresponding 5 '-Region through a Long-Distance RNA-RNA Interaction

    Full text link
    [EN] Cap-independent translational enhancers (CITEs) have been identified at the 3'-terminal regions of distinct plant positive-strand RNA viruses belonging to families Tombusviridae and Luteoviridae. On the bases of their structural and/or functional requirements, at least six classes of CITEs have been defined whose distribution does not correlate with taxonomy. The so-called TED class has been relatively under-studied and its functionality only confirmed in the case of Satellite tobacco necrosis virus, a parasitic subviral agent. The 3' untranslated region of the monopartite genome of Pelargonium line pattern virus (PLPV), the recommended type member of a tentative new genus (Pelarspovirus) in the family Tombusviridae, was predicted to contain a TED-like CITE. Similar CITEs can be anticipated in some other related viruses though none has been experimentally verified. Here, in the first place, we have performed a reassessment of the structure of the putative PLPV-TED through in silico predictions and in vitro SHAPE analysis with the full-length PLPV genome, which has indicated that the presumed TED element is larger than previously proposed. The extended conformation of the TED is strongly supported by the pattern of natural sequence variation, thus providing comparative structural evidence in support of the structural data obtained by in silico and in vitro approaches. Next, we have obtained experimental evidence demonstrating the in vivo activity of the PLPV-TED in the genomic (g) RNA, and also in the subgenomic (sg) RNA that the virus produces to express 3'-proximal genes. Besides other structural features, the results have highlighted the key role of long-distance kissing-loop interactions between the 3'-CITE and 5'-proximal hairpins for gRNA and sgRNA translation. Bioassays of CITE mutants have confirmed the importance of the identified 5'-3' RNA communication for viral infectivity and, moreover, have underlined the strong evolutionary constraints that may operate on genome stretches with both regulatory and coding functions.This work was supported by grants BFU2009-11699 and BFU2012-36095 from the Ministerio de Investigacion, Ciencia e Innovacion (MICINN, Spain, www.micinn.es) and the Ministerio de Economia y Competitividad (MINECO, Spain, http://www.mineco.gob.es), respectively, and ACOMP/2012/100 from the Generalitat Valenciana (http://www.gva.es) (to C.H.). MBP and LR were the recipients of a predoctoral and postdoctoral (Juan de la Cierva program) contract, respectively, from MICINN, and MPC was the recipient of a predoctoral contract from MINECO.Blanco Pérez, M.; Pérez Cañamás, M.; Ruiz, L.; Hernandez Fort, C. (2016). Efficient Translation of Pelargonium line pattern virus RNAs Relies on a TED-Like 3 '-Translational Enhancer that Communicates with the Corresponding 5 '-Region through a Long-Distance RNA-RNA Interaction. PLoS ONE. 11(4):1-24. https://doi.org/10.1371/journal.pone.0152593S12411

    Multifaceted Regulation of Translational Readthrough by RNA Replication Elements in a Tombusvirus

    Get PDF
    Translational readthrough of stop codons by ribosomes is a recoding event used by a variety of viruses, including plus-strand RNA tombusviruses. Translation of the viral RNA-dependent RNA polymerase (RdRp) in tombusviruses is mediated using this strategy and we have investigated this process using a variety of in vitro and in vivo approaches. Our results indicate that readthrough generating the RdRp requires a novel long-range RNA-RNA interaction, spanning a distance of ∼3.5 kb, which occurs between a large RNA stem-loop located 3'-proximal to the stop codon and an RNA replication structure termed RIV at the 3'-end of the viral genome. Interestingly, this long-distance RNA-RNA interaction is modulated by mutually-exclusive RNA structures in RIV that represent a type of RNA switch. Moreover, a different long-range RNA-RNA interaction that was previously shown to be necessary for viral RNA replicase assembly was also required for efficient readthrough production of the RdRp. Accordingly, multiple replication-associated RNA elements are involved in modulating the readthrough event in tombusviruses and we propose an integrated mechanistic model to describe how this regulatory network could be advantageous by (i) providing a quality control system for culling truncated viral genomes at an early stage in the replication process, (ii) mediating cis-preferential replication of viral genomes, and (iii) coordinating translational readthrough of the RdRp with viral genome replication. Based on comparative sequence analysis and experimental data, basic elements of this regulatory model extend to other members of Tombusviridae, as well as to viruses outside of this family

    Retinoblastoma and AB0 blood groups

    No full text
    corecore