28 research outputs found

    SARS‑CoV‑2 entry into and evolution within a skilled nursing facility

    Get PDF
    SARS-CoV-2 belongs to the family Coronaviridae which includes multiple human pathogens that have an outsized impact on aging populations. As a novel human pathogen, SARS-CoV-2 is undergoing continuous adaptation to this new host species and there is evidence of this throughout the scientific and public literature. However, most investigations of SARS-CoV-2 evolution have focused on largescale collections of data across diverse populations and/or living environments. Here we investigate SARS-CoV-2 evolution in epidemiologically linked individuals within a single outbreak at a skilled nursing facility beginning with initial introduction of the pathogen. The data demonstrate that SARSCoV- 2 was introduced to the facility multiple times without establishing an interfacility transmission chain, followed by a single introduction that infected many individuals within a week. This largescale introduction by a single genotype then persisted in the facility. SARS-CoV-2 sequences were investigated at both the consensus and intra-host variation levels. Understanding the variability in SARS-CoV-2 during transmission chains will assist in understanding the spread of this disease and can ultimately inform best practices for mitigation strategies

    In Vitro Assembly and Stabilization of Dengue and Zika Virus Envelope Protein Homo-Dimers

    Get PDF
    Zika virus (ZIKV) and the 4 dengue virus (DENV) serotypes are mosquito-borne Flaviviruses that are associated with severe neuronal and hemorrhagic syndromes. The mature flavivirus infectious virion has 90 envelope (E) protein homo-dimers that pack tightly to form a smooth protein coat with icosahedral symmetry. Human antibodies that strongly neutralize ZIKV and DENVs recognize complex quaternary structure epitopes displayed on E-homo-dimers and higher order structures. The ZIKV and DENV E protein expressed as a soluble protein is mainly a monomer that does not display quaternary epitopes, which may explain the modest success with soluble recombinant E (sRecE) as a vaccine and diagnostic antigen. New strategies are needed to design recombinant immunogens that display these critical immune targets. Here we present two novel methods for building or stabilizing in vitro E-protein homo-dimers that display quaternary epitopes. In the first approach we immobilize sRecE to enable subsequent dimer generation. As an alternate method, we describe the use of human mAbs to stabilize homo-dimers in solution. The ability to produce recombinant E protein dimers displaying quaternary structure epitopes is an important advance with applications in flavivirus diagnostics and vaccine development

    Shortening of Zika virus CD-loop reduces neurovirulence while preserving antigenicity

    Get PDF
    Zika virus (ZIKV) is a mosquito-borne positive sense RNA virus. Recently, ZIKV emerged into the Western hemisphere as a human health threat, with severe disease associated with developmental and neurological complications. The structural envelope protein of ZIKV and other neurotropic flaviviruses contains an extended CD-loop relative to non-neurotropic flaviviruses, and has been shown to augment ZIKV stability and pathogenesis. Here we show that shortening the CD-loop in ZIKV attenuates the virus in mice, by reducing the ability to invade and replicate in the central nervous system. The CD-loop mutation was genetically stable following infection in mice, though secondary site mutations arise adjacent to the CD-loop. Importantly, while shortening of the CD-loop attenuates the virus, the CD-loop mutant maintains antigenicity in immunocompetent mice, eliciting an antibody response that similarly neutralizes both the mutant and wildtype ZIKV. These findings suggest that the extended CD-loop in ZIKV is a determinant of neurotropism and may be a target in live-attenuated vaccine design, for not only ZIKV, but for other neurotropic flaviviruses

    Epitope Addition and Ablation via Manipulation of a Dengue Virus Serotype 1 Infectious Clone

    Get PDF
    ABSTRACT Despite the clinical relevance, dengue virus (DENV) research has been hampered by the absence of robust reverse genetic systems to manipulate the viral serotypes for propagation and generation of mutant viruses. In this article, we describe application of an infectious clone system for DENV serotype 1 (DENV1). Similar to previous clones in both flaviviruses and coronaviruses, the approach constructs a panel of contiguous cDNAs that span the DENV genome and can be systematically and directionally assembled to produce viable, full-length viruses. Comparison of the virus derived from the infectious clone with the original viral isolate reveals identical sequence, comparable endpoint titers, and similar focus staining. Both focus-forming assays and percent infection by flow cytometry revealed overlapping replication levels in two different cell types. Moreover, serotype-specific monoclonal antibodies (MAbs) bound similarly to infectious clone and the natural isolate. Using the clone, we were able to insert a DENV4 type-specific epitope recognized by primate MAb 5H2 into envelope (E) protein domain I (EDI) of DENV1 and recover a viable chimeric recombinant virus. The recombinant DENV1 virus was recognized and neutralized by the DENV4 type-specific 5H2 MAb. The introduction of the 5H2 epitope ablated two epitopes on DENV1 EDI recognized by human MAbs (1F4 and 14C10) that strongly neutralize DENV1. Together, the work demonstrates the utility of the infectious clone and provides a resource to rapidly manipulate the DENV1 serotype for generation of recombinant and mutant viruses. IMPORTANCE Dengue viruses (DENVs) are significant mosquito-transmitted pathogens that cause widespread infection and can lead to severe infection and complications. Here we further characterize a novel and robust DENV serotype 1 (DENV1) infectious clone system that can be used to support basic and applied research. We demonstrate how the system can be used to probe the antigenic relationships between strains by creating viable recombinant viruses that display or lack major antibody epitopes. The DENV1 clone system and recombinant viruses can be used to analyze existing vaccine immune responses and inform second-generation bivalent vaccine designs

    Towards a method for cryopreservation of mosquito vectors of human pathogens

    Get PDF
    Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes

    Human dengue virus serotype 2 neutralizing antibodies target two distinct quaternary epitopes

    Get PDF
    Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever and dengue shock syndrome. It is estimated that a third of the world’s population is at risk for infection, with an estimated 390 million infections annually. Dengue virus serotype 2 (DENV2) causes severe epidemics, and the leading tetravalent dengue vaccine has lower efficacy against DENV2 compared to the other 3 serotypes. In natural DENV2 infections, strongly neutralizing type-specific antibodies provide protection against subsequent DENV2 infection. While the epitopes of some human DENV2 type-specific antibodies have been mapped, it is not known if these are representative of the polyclonal antibody response. Using structure-guided immunogen design and reverse genetics, we generated a panel of recombinant viruses containing amino acid alterations and epitope transplants between different serotypes. Using this panel of recombinant viruses in binding, competition, and neutralization assays, we have finely mapped the epitopes of three human DENV2 type-specific monoclonal antibodies, finding shared and distinct epitope regions. Additionally, we used these recombinant viruses and polyclonal sera to dissect the epitope-specific responses following primary DENV2 natural infection and monovalent vaccination. Our results demonstrate that antibodies raised following DENV2 infection or vaccination circulate as separate populations that neutralize by occupying domain III and domain I quaternary epitopes. The fraction of neutralizing antibodies directed to different epitopes differs between individuals. The identification of these epitopes could potentially be harnessed to evaluate epitope-specific antibody responses as correlates of protective immunity, potentially improving vaccine design

    A Reverse Genetics Platform That Spans the Zika Virus Family Tree

    Get PDF
    ABSTRACT Zika virus (ZIKV), a mosquito-borne flavivirus discovered in 1947, has only recently caused large outbreaks and emerged as a significant human pathogen. In 2015, ZIKV was detected in Brazil, and the resulting epidemic has spread throughout the Western Hemisphere. Severe complications from ZIKV infection include neurological disorders such as Guillain-Barré syndrome in adults and a variety of fetal abnormalities, including microcephaly, blindness, placental insufficiency, and fetal demise. There is an urgent need for tools and reagents to study the pathogenesis of epidemic ZIKV and for testing vaccines and antivirals. Using a reverse genetics platform, we generated six ZIKV infectious clones and derivative viruses representing diverse temporal and geographic origins. These include three versions of MR766, the prototype 1947 strain (with and without a glycosylation site in the envelope protein), and H/PF/2013, a 2013 human isolate from French Polynesia representative of the virus introduced to Brazil. In the course of synthesizing a clone of a circulating Brazilian strain, phylogenetic studies identified two distinct ZIKV clades in Brazil. We reconstructed viable clones of strains SPH2015 and BeH819015, representing ancestral members of each clade. We assessed recombinant virus replication, binding to monoclonal antibodies, and virulence in mice. This panel of molecular clones and recombinant virus isolates will enable targeted studies of viral determinants of pathogenesis, adaptation, and evolution, as well as the rational attenuation of contemporary outbreak strains to facilitate the design of vaccines and therapeutics. IMPORTANCE Viral emergence is a poorly understood process as evidenced by the sudden emergence of Zika virus in Latin America and the Caribbean. Malleable reagents that both predate and span an expanding epidemic are key to understanding the virologic determinants that regulate pathogenesis and transmission. We have generated representative cDNA molecular clones and recombinant viruses that span the known ZIKV family tree, including early Brazilian isolates. Recombinant viruses replicated efficiently in cell culture and were pathogenic in immunodeficient mice, providing a genetic platform for rational vaccine and therapeutic design

    CD-loop Extension in Zika Virus Envelope Protein Key for Stability and Pathogenesis

    Get PDF
    With severe disease manifestations including microcephaly, congenital malformation, and Guillain-Barré syndrome, Zika virus (ZIKV) remains a persistent global public health threat. Despite antigenic similarities with dengue viruses, structural studies have suggested the extended CD-loop and hydrogen-bonding interaction network within the ZIKV envelope protein contribute to stability differences between the viral families. This enhanced stability may lead to the augmented infection, disease manifestation, and persistence in body fluids seen following ZIKV infection. To examine the role of these motifs in infection, we generated a series of ZIKV recombinant viruses that disrupted the hydrogen-bonding network (350A, 351A, and 350A/351A) or the CD-loop extension (Δ346). Our results demonstrate a key role for the ZIKV extended CD-loop in cell-type-dependent replication, virion stability, and in vivo pathogenesis. Importantly, the Δ346 mutant maintains similar antigenicity to wild-type virus, opening the possibility for its use as a live-attenuated vaccine platform for ZIKV and other clinically relevant flaviviruses

    Analyzing the Human Serum Antibody Responses to a Live Attenuated Tetravalent Dengue Vaccine Candidate

    Get PDF
    BACKGROUND: Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation. METHODS: We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration. Using DENV-specific human monoclonal antibodies (mAbs) and recombinant DENV displaying different serotype-specific Ab epitopes, we mapped the specificity of TDV-induced nAbs against DENV-1-3. RESULTS: Nearly all subjects had high levels of DENV-2-specific nAbs directed to epitopes centered on domain III of the envelope protein. In some individuals, the vaccine induced nAbs that tracked with a DENV-1-specific neutralizing epitope centered on domain I of the envelope protein. The vaccine induced binding Abs directed to a DENV-3 type-specific neutralizing epitope, but findings of mapping of DENV-3 type-specific nAbs were inconclusive. CONCLUSION: Here we provide qualitative measures of the magnitude and epitope specificity of the nAb responses to TDV. This information will be useful for understanding the performance of TDV in clinical trials and for identifying correlates of protective immunity
    corecore