633 research outputs found

    Search for a vector-like quark Tâ€Č → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark Tâ€Č, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first Tâ€Č search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet Tâ€Č states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a Tâ€Č quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength ÎșT = 0.25 and a relative decay width Γ/MTâ€Č < 5%

    Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The production of a top quark-antiquark pair in association with a W boson (ttˉW)(t\bar{t}W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb−1^{−1}. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive (ttˉW)(t\bar{t}W) production cross section in the full phase space is measured to be 868 ± 40(stat) ± 51(syst) fb. The (ttˉW)+(t\bar{t}W)+ and (ttˉW)−(t\bar{t}W)− cross sections are also measured as 553 ± 30(stat) ± 30(syst) and 343 ± 26(stat) ± 25(syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61±0.15(stat)−0.05+0.07^{+0.07}_{−0.05}(syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb−1^{−1}. The inclusive fiducial cross section is measured to be σfidσ_{fid}=73.4−5.3+5.4^{+5.4}_{−5.3}(stat)−2.2+2.4^{+2.4}_{−2.2}(syst) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    Get PDF
    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp → pp + Z/γ + X, in proton-tagged events from proton–proton collisions at √s = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600–1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. odelindependent upper limits on the visible production cross section of pp → pp + Z/γ + X are set

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Search for pair-produced vector-like leptons in final states with third-generation leptons and at least three b quark jets in proton-proton collisions at √s = 13 TeV

    Get PDF

    Observation of τ Lepton Pair Production in Ultraperipheral Pb-Pb Collisions at sqrt[s_{NN}]=5.02 TeV

    Get PDF

    Search for nonresonant Higgs boson pair production in the four leptons plus twob jets final state in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s√ = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb−1. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier ÎŒ, defined as the ratio of the observed HH production rate in the HH→ZZ∗bb¯¯¯→4ℓbbÂŻÂŻÂŻ decay channel to the standard model (SM) expectation. Possible modifications of the H trilinear coupling λHHH with respect to the SM value are investigated. The coupling modifier Îșλ, defined as λHHH divided by its SM prediction, is constrained to be within the observed (expected) range −8.8 (−9.8) < Îșλ < 13.4 (15.0) at 95% confidence level

    Measurements of the Higgs boson production cross section and couplings in the W boson pair decay channel in proton-proton collisions at s=13 TeV\sqrt{s}=13\,\text {Te\hspace{-.08em}V}

    Get PDF
    Production cross sections of the standard model Higgs boson decaying to a pair of W bosons are measured in proton-proton collisions at a center-of-mass energy of 13Te\hspace{-.08em}V. The analysis targets Higgs bosons produced via gluon fusion, vector boson fusion, and in association with a W or Z boson. Candidate events are required to have at least two charged leptons and moderate missing transverse momentum, targeting events with at least one leptonically decaying W boson originating from the Higgs boson. Results are presented in the form of inclusive and differential cross sections in the simplified template cross section framework, as well as couplings of the Higgs boson to vector bosons and fermions. The data set collected by the CMS detector during 2016–2018 is used, corresponding to an integrated luminosity of 138fb−1. The signal strength modifier ÎŒ, defined as the ratio of the observed production rate in a given decay channel to the standard model expectation, is measured to be ÎŒ=0.95+0.10−0.09. All results are found to be compatible with the standard model within the uncertainties

    Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    The production of a top quark-antiquark pair in association with a W boson (ttˉW)(t\bar{t}W) is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The analyzed data was recorded by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb−1^{−1}. Events with two or three leptons (electrons and muons) and additional jets are selected. In events with two leptons, a multiclass neural network is used to distinguish between the signal and background processes. Events with three leptons are categorized based on the number of jets and of jets originating from b quark hadronization, and the lepton charges. The inclusive (ttˉW)(t\bar{t}W) production cross section in the full phase space is measured to be 868 ± 40(stat) ± 51(syst) fb. The (ttˉW)+(t\bar{t}W)+ and (ttˉW)−(t\bar{t}W)− cross sections are also measured as 553 ± 30(stat) ± 30(syst) and 343 ± 26(stat) ± 25(syst) fb, respectively, and the corresponding ratio of the two cross sections is found to be 1.61±0.15(stat)−0.05+0.07^{+0.07}_{−0.05}(syst). The measured cross sections are larger than but consistent with the standard model predictions within two standard deviations, and represent the most precise measurement of these cross sections to date
    • 

    corecore