17,765 research outputs found

    Bose Einstein Condensation of incommensurate solid 4He

    Full text link
    It is pointed out that simulation computation of energy performed so far cannot be used to decide if the ground state of solid 4He has the number of lattice sites equal to the number of atoms (commensurate state) or if it is different (incommensurate state). The best variational wave function, a shadow wave function, gives an incommensurate state but the equilibrium concentration of vacancies remains to be determined. In order to investigate the presence of a supersolid phase we have computed the one--body density matrix in solid 4He for the incommensurate state by means of the exact Shadow Path Integral Ground State projector method. We find a vacancy induced Bose Einstein condensation of about 0.23 atoms per vacancy at a pressure of 54 bar. This means that bulk solid 4He is supersolid at low enough temperature if the exact ground state is incommensurate.Comment: 5 pages, 2 figure

    Imaginary Time Correlations and the phaseless Auxiliary Field Quantum Monte Carlo

    Full text link
    The phaseless Auxiliary Field Quantum Monte Carlo method provides a well established approximation scheme for accurate calculations of ground state energies of many-fermions systems. Here we apply the method to the calculation of imaginary time correlation functions. We give a detailed description of the technique and we test the quality of the results for static and dynamic properties against exact values for small systems.Comment: 13 pages, 6 figures; submitted to J. Chem. Phy

    Quantum Monte Carlo study of a vortex in superfluid 4^4He and search for a vortex state in the solid

    Full text link
    We have performed a microscopic study of a straight quantized vortex line in three dimensions in condensed 4^4He at zero temperature using the Shadow Path Integral Ground State method and the fixed-phase approximation. We have characterized the energy and the local density profile around the vortex axis in superfluid 4^4He at several densities, ranging from below the equilibrium density up to the overpressurized regime. For the Onsager-Feynman (OF) phase our results are exact and represent a benchmark for other theories. The inclusion of backflow correlations in the phase improves the description of the vortex with respect to the OF phase by a large reduction of the core energy of the topological excitation. At all densities the phase with backflow induces a partial filling of the vortex core and this filling slightly increases with density. The core size slightly decreases for increasing density and the density profile has well defined density dependent oscillations whose wave vector is closer to the wave vector of the main peak in the static density response function rather than to the roton wave vector. Our results can be applied to vortex rings of large radius RR and we find good agreement with the experimental value of the energy as function of RR without any free parameter. We have studied also 4^4He above the melting density in the solid phase using the same functional form for the phase as in the liquid. We found that off-diagonal properties of the solid are not qualitatively affected by the velocity field induced by the vortex phase, both with and without backflow correlations. Therefore we find evidence that a perfect 4^4He crystal is not a marginally stable quantum solid in which rotation would be able to induce off-diagonal long-range coherence.Comment: 15 pages, 8 figure

    Exact ground state Monte Carlo method for Bosons without importance sampling

    Full text link
    Generally ``exact'' Quantum Monte Carlo computations for the ground state of many Bosons make use of importance sampling. The importance sampling is based, either on a guiding function or on an initial variational wave function. Here we investigate the need of importance sampling in the case of Path Integral Ground State (PIGS) Monte Carlo. PIGS is based on a discrete imaginary time evolution of an initial wave function with a non zero overlap with the ground state, that gives rise to a discrete path which is sampled via a Metropolis like algorithm. In principle the exact ground state is reached in the limit of an infinite imaginary time evolution, but actual computations are based on finite time evolutions and the question is whether such computations give unbiased exact results. We have studied bulk liquid and solid 4He with PIGS by considering as initial wave function a constant, i.e. the ground state of an ideal Bose gas. This implies that the evolution toward the ground state is driven only by the imaginary time propagator, i.e. there is no importance sampling. For both the phases we obtain results converging to those obtained by considering the best available variational wave function (the Shadow wave function) as initial wave function. Moreover we obtain the same results even by considering wave functions with the wrong correlations, for instance a wave function of a strongly localized Einstein crystal for the liquid phase. This convergence is true not only for diagonal properties such as the energy, the radial distribution function and the static structure factor, but also for off-diagonal ones, such as the one--body density matrix. From this analysis we conclude that zero temperature PIGS calculations can be as unbiased as those of finite temperature Path Integral Monte Carlo.Comment: 11 pages, 10 figure

    A first principles simulation of rigid water

    Full text link
    We present the results of Car-Parrinello (CP) simulations of water at ambient conditions and under pressure, using a rigid molecule approximation. Throughout our calculations, water molecules were maintained at a fixed intramolecular geometry corresponding to the average structure obtained in fully unconstrained simulations. This allows us to use larger time steps than those adopted in ordinary CP simulations of water, and thus to access longer time scales. In the absence of chemical reactions or dissociation effects, these calculations open the way to ab initio simulations of aqueous solutions that require timescales substantially longer than presently feasible (e.g. simulations of hydrophobic solvation). Our results show that structural properties and diffusion coefficients obtained with a rigid model are in better agreement with experiment than those determined with fully flexible simulations. Possible reasons responsible for this improved agreement are discussed

    Post-T Tauri stars: a false problem

    Get PDF
    We consider the problem of the apparent lack of old T Tauri stars in low-mass star forming regions in the framework of the standard model of low-mass star formation. We argue that the similarity between molecular cloud lifetime and ambipolar diffusion timescale implies that star formation does not take place instantaneously, nor at a constant rate. We conclude that the probability of finding a large population of old stars in a star forming region is intrinsically very small and that the post-T Tauri problem is by and large not existent.Comment: 6 pages (LaTeX), no Figures to be published in The Astrophysical Journal Letter

    Implementation of the Linear Method for the optimization of Jastrow-Feenberg and Backflow Correlations

    Get PDF
    We present a fully detailed and highly performing implementation of the Linear Method [J. Toulouse and C. J. Umrigar (2007)] to optimize Jastrow-Feenberg and Backflow Correlations in many-body wave-functions, which are widely used in condensed matter physics. We show that it is possible to implement such optimization scheme performing analytical derivatives of the wave-function with respect to the variational parameters achieving the best possible complexity O(N^3) in the number of particles N.Comment: submitted to the Comp. Phys. Com

    Dynamic structure factor for 3He in two-dimensions

    Full text link
    Recent neutron scattering experiments on 3He films have observed a zero-sound mode, its dispersion relation and its merging with -and possibly emerging from- the particle-hole continuum. Here we address the study of the excitations in the system via quantum Monte Carlo methods: we suggest a practical scheme to calculate imaginary time correlation functions for moderate-size fermionic systems. Combined with an efficient method for analytic continuation, this scheme affords an extremely convincing description of the experimental findings.Comment: 5 pages, 5 figure

    The Fate of the First Galaxies. I. Self-Consistent Cosmological Simulations with Radiative Transfer

    Get PDF
    In cold dark matter (CDM) cosmogonies, low-mass objects play an important role in the evolution of the universe. Not only are they the first luminous objects to shed light in a previously dark universe, but, if their formation is not inhibited by their own feedback, they dominate the galaxy mass function until redshift z \sim 5. In this paper we present and discuss the implementation of a 3D cosmological code that includes most of the needed physics to simulate the formation and evolution of the first galaxies with a self-consistent treatment of radiative feedback. The simulation includes continuum radiative transfer using the ``Optically Thin Variable Eddington Tensor'' (OTVET) approximation and line-radiative transfer in the H_2 Lyman-Werner bands of the background radiation. We include detailed chemistry for H_2 formation/destruction, molecular and atomic cooling/heating processes, ionization by secondary electrons, and heating by Ly\alpha resonant scattering. We find that the first galaxies ("small-halos") are characterized by a bursting star formation, self-regulated by a feedback process that acts on cosmological scales. Their formation is not suppressed by feedback processes; therefore, their impact on cosmic evolution cannot be neglected. The main focus of this paper is on the methodology of the simulations, and we only briefly introduce some of the results. An extensive discussion of the results and the nature of the feedback mechanism are the focus of a companion paper.Comment: Accepted for publication on ApJ, 33 pages, including 14 figures and 2 tables. Movies and a higher quality version of the paper (figures) are available at: http://casa.colorado.edu/~ricotti/MOVIES.htm
    corecore