44 research outputs found

    Increased Programmed Death-1 Molecule Expression in Cytomegalovirus Disease and Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation

    Get PDF
    To study the role of the programmed death-1 molecule (PD-1) in cytomegalovirus (CMV) infection and disease after allogeneic hematopoietic cell transplantation (HCT), 206 subjects were followed prospectively for immune response to CMV and assigned to 3 groups based on CMV outcome. The subjects were analyzed retrospectively for PD-1 expression in cryopreserved CD4+ and CD8+T cells collected at days 40, 90, 120, 150, 180, and 360 posttransplantation. HCT recipients with CMV disease (n=14) were compared with recipients with prolonged CMV infection, but no CMV disease (median duration of infection, 3 months; n=14) and with controls with no CMV infection who received similar transplants (n=22). The CMV disease group had a significantly higher mean fluorescein intensity of PD-1 in CD4+ (P < .05) and CD8+ (P < .05) lymphocytes at all time points studied. PD-1 expression also was significantly elevated in those with severe acute graft-versus-host disease (aGVHD), including the no-viremia group. The data suggest that PD-1 is induced by aGVHD even in the absence of CMV infection. This enhanced PD-1 expression during severe aGVHD and with CMV reactivation could explain the known role of aGVHD as a risk factor for CMV disease

    Use of Transgenic HLA A∗0201/Kb and HHD II Mice To Evaluate Frequency of Cytomegalovirus IE1-Derived Peptide Usage in Eliciting Human CD8 Cytokine Response

    No full text
    Unlike the pp65 protein of human cytomegalovirus (CMV), which has an immunodominant peptide, pp65(495-503), recognized by human CD8(+) cells in the context of HLA A∗0201, the fine peptide specificity for CMV IE1 has shown no such immunodominance. With the use of transgenic HLA A∗0201/Kb and HHD II mice, a selected pool of IE1 peptides, including IE1(p256-264), IE1(p297-304), and IE1(p316-324), were shown to stimulate cytolytic T-lymphocyte lysis in the context of HLA A∗0201. Based on an intracellular gamma interferon response, IE1(p297-304), a previously unrecognized CD8 epitope, triggered a prominent response to CMV IE1 in HLA A∗0201 subjects

    Biologic and Immunologic Effects of Knockout of Human Cytomegalovirus pp65 Nuclear Localization Signal â–¿

    No full text
    The human cytomegalovirus (CMV) pp65 protein contains two bipartite nuclear localization signals (NLSs) at amino acids (aa) 415 to 438 and aa 537 to 561 near the carboxy terminus of CMV pp65 and a phosphate binding site related to kinase activity at lysine-436. A mutation of pp65 with K436N (CMV pp65mII) and further deletion of aa 537 to 561 resulted in a novel protein (pp65mIINLSKO, where NLSKO indicate NLS knockout) that is kinaseless and that has markedly reduced nuclear localization. The purpose of this study was to biologically characterize this protein and its immunogenicity compared to that of native pp65. Unlike the native CMV pp65, following either DNA- or recombinant adeno-associated virus-based transduction of CMV pp65mIINLSKO into cells in vitro, the first observation of pp65mIINLSKO expression was in the cytoplasm and pp65mIINLSKO was expressed at higher levels than the native protein. The CMV pp65mIINLSKO mRNA was more abundant earlier than CMV pp65 mRNA (at 4 h and 8 h, respectively), but the half-lives of the proteins were the same. This modification altered the antigenic processing of CMV pp65 in vitro, as measured by the improved efficiency of cytotoxic killing in a pp65mIINLSKO-transduced human HLA A*0201 target cell line. In HHDII mice expressing HLA A*0201, pp65mIINLSKO was as immunogenic as CMV pp65. By RNA microarray analysis, expression of the CMV pp65mIINLSKO had less of an effect on cell cycle pathways than the native CMV pp65 did and a greater effect on cell surface signaling pathways involving immune activity. It is concluded that the removal of the primary NLS motif from pp65 does not impair its immunogenicity and should be considered in the design of a vaccine
    corecore