639 research outputs found

    Integrated cascade biorefinery processes for the production of single cell oil by Lipomyces starkeyi from Arundo donax L. hydrolysates

    Get PDF
    Giant reed (Arundo donax L.) is a promising source of carbohydrates that can be converted into single cell oil (SCO) by oleaginous yeasts. Microbial conversion of both hemicellulose and cellulose fractions represents the key step for increasing the economic sustainability for SCO production. Lipomyces starkeyi DSM 70,296 was cultivated in two xylose-rich hydrolysates, obtained by the microwave-assisted hydrolysis of hemicellulose catalysed by FeCl3 or Amberlyst-70, and in two glucose-rich hydrolysates obtained by the enzymatic hydrolysis of cellulose. L. starkeyi grew on both undetoxified and partially-detoxified hydrolysates, achieving the lipid content of 30 wt% and yield values in the range 15–24 wt%. For both integrated cascade processes the final production of about 8 g SCO from 100 g biomass was achieved. SCO production through integrated hydrolysis cascade processes represents a promising solution for the effective exploitation of lignocellulosic feedstock from perennial grasses towards new generation biodiesel and other valuable bio-based products

    Biomass-derived catalysts: synthesis and characterization of hydrochars and pyrochars

    Get PDF
    Lignocellulosic biomass is one of the more important renewable sources and it will play a strategic role in many future markets, taking into consideration that a renewable energy share of 32% is binding at the European level by 2030. Deconstruction of lignocellulosic biomass can be carried out via hydrothermal processes and, among them, hydrothermal carbonization (HTC) represents a versatile process, which promotes the progressively deoxygenation of the biomass, under relatively mild reaction conditions. The obtained solid-rich product, called hydrochar, can be used in a wide range of applications, such as adsorption, energy storage, CO2 sequestration, catalysis etc. In this last field, within the project PRIN 2020 LEVANTE “LEvulinic acid Valorization through Advanced Novel Technologies” (2020CZCJN7), different hydrochars have been synthesized starting from cellulose and the effects of the main reaction parameters have been investigated employing statistical modelling. Under the selected set of processing parameters, the yield of hydrochars was in the range 38-48 wt%, with a carbon content of 60-70 wt% and corresponding higher heating values amounting to 17-27 MJ/kg, confirming the successful conversion of cellulose into a carbonaceous material. Finally, on the basis of final applications, also pyrochars have been prepared starting from the optimal hydrochars, in order to increase the aromatization degree and the surface areas. All the synthesized hydrochars and pyrochars will be further functionalized and employed, as acid catalysts, for the valorization of levulinic acid, in particular for its conversion to diphenolic acid, in agreement with the objectives of the project LEVANTE

    Design approach for the sustainable synthesis of sulfonated biomass-derived hydrochars and pyrochars for the production of 5-(hydroxymethyl)furfural

    Get PDF
    The sustainable synthesis of carbon-based sulfonated acid catalysts from biomass is of paramount importance from the perspective of sustainability. However, the traditional pyrolysis method leads to low solid yields and poor carbon stability. A cascade synthesis is here proposed, combining hydrothermal carbonization and pyrolysis, to produce a “high-quality” carbon-based precursor, followed by its sulfonation to increase the pristine acidity. The proposed multi-step preparation is effective when each step is optimized, primarily the hydrothermal carbonization, which should be carefully optimized. A chemometric approach was employed to optimize the hydrochar synthesis, using microcrystalline cellulose as starting feedstock. The identified optimal reaction conditions were applied to the hydrothermal carbonization of hazelnut shells, which is a more complex but cheaper feedstock, and the obtained hydrochars were pyrolyzed to produce pyrochars. The most promising chars were sulfonated and tested as heterogeneous acid catalysts in the aqueous conversion of fructose to 5-(hydroxymethyl)furfural, a promising platform chemical of great industrial interest, obtaining maximum yields of about 40 mol%. These promising results pave the way for the use of such wastes as efficient acid catalysts for the synthesis of 5-(hydroxymethyl)furfural, contributing to ensure the biomass circular exploitation

    Sustainable exploitation of residual cynara cardunculus l. To levulinic acid and n-butyl levulinate

    Get PDF
    Hydrolysis and butanolysis of lignocellulosic biomass are efficient routes to produce two valuable bio-based platform chemicals, levulinic acid and n-butyl levulinate, which find increasing applications in the field of biofuels and for the synthesis of intermediates for chemical and pharmaceutical industries, food additives, surfactants, solvents and polymers. In this research, the ac-id-catalyzed hydrolysis of the waste residue of Cynara cardunculus L. (cardoon), remaining after seed removal for oil exploitation, was investigated. The cardoon residue was employed as-received and after a steam-explosion treatment which causes an enrichment in cellulose. The effects of the main reaction parameters, such as catalyst type and loading, reaction time, temperature and heat-ing methodology, on the hydrolysis process were assessed. Levulinic acid molar yields up to about 50 mol % with levulinic acid concentrations of 62.1 g/L were reached. Moreover, the one-pot bu-tanolysis of the steam-exploded cardoon with the bio-alcohol n-butanol was investigated, demon-strating the direct production of n-butyl levulinate with good yield, up to 42.5 mol %. These results demonstrate that such residual biomass represent a promising feedstock for the sustainable production of levulinic acid and n-butyl levulinate, opening the way to the complete exploitation of this crop

    Production of polyhydroxybutyrate by the cyanobacterium cf. Anabaena sp

    Get PDF
    Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass−1 d−1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L−1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L−1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions

    Multi-step exploitation of raw arundo donax L. For the selective synthesis of second-generation sugars by chemical and biological route

    Get PDF
    Lignocellulosic biomass represents one of the most important feedstocks for future biorefineries, being a precursor of valuable bio-products, obtainable through both chemical and biological conversion routes. Lignocellulosic biomass has a complex matrix, which requires the careful development of multi-step approaches for its complete exploitation to value-added compounds. Based on this perspective, the present work focuses on the valorization of hemicellulose and cellulose fractionsof giant reed (Arundo donax L.) to give second-generation sugars, minimizing the formation of reaction by-products. The conversion of hemicellulose to xylose was undertaken in the presence of the heterogeneous acid catalyst Amberlyst-70 under microwave irradiation. The effect of the main reaction parameters, such as temperature, reaction time, catalyst, and biomass loadings on sugars yield was studied, developing a high gravity approach. Under the optimised reaction conditions (17 wt% Arundo donax L. loading, 160 °C, Amberlyst-70/Arundo donax L. weight ratio 0.2 wt/wt), the xylose yield was 96.3 mol%. In the second step, the cellulose-rich solid residue was exploited through the chemical or enzymatic route, obtaining glucose yields of32.5 and56.2 mol%, respectively. This work proves the efficiency of this innovative combination of chemical and biological catalytic approaches, for the selective conversion of hemicellulose and cellulose fractions of Arundo donax L. to versatile platform products

    Sustainable exploitation of paper mill wastes: a resource to re-use in the paper factory

    Get PDF
    In the papermaking industry, billions of tonnes of paper mill wastes are globally produced as wastes every year. These include cellulosic and inorganic sludges, which are traditionally landfilled, leading to environmental and economic issues. For these reasons, it is urgent to develop new sustainable strategies to exploit these fractions. Up to now, these sludges have been exploited i) for land application (as soil amendment/substrate), ii) for energy recovery and iii) for the production of bio-composites. However, the above possibilities involve the direct use of the bulk wastes, without fractionating/exploiting each feedstock component. In the perspective of the valorisation of the different components, the present investigation has considered different strategies: i) a thermal treatment, ii) an alkaline and iii) a mechanical one, aimed at the fractionation and recovery of the two main components of cellulosic and inorganic sludge, cellulose and calcium carbonate, respectively, that could be advantageously reused within the same papermaking process

    Conversion of the hydrochar recovered after levulinic acid production into activated carbon adsorbents

    Get PDF
    Levulinic acid production by acid-catalyzed hydrothermal conversion of (ligno)cellulosic biomass generates significant amounts of carbonaceous hydrochar, which is currently considered a final waste. In this work, the hydrochar recovered after the levulinic acid production, was subjected to cascade pyrolysis and chemical activation treatments (by H3PO4 or KOH), to synthesize activated carbons. The pyrolysis post-treatment was already effective in improving the surface properties of the raw hydrochar (Specific Surface Area: 388 m2/g, VP: 0.22 cm3/g, VMESO: 0.07 cm3/g, VMICRO: 0.14 cm3/g), by removing volatile compounds. KOH activation resulted as the most appropriate for further improving the surface properties of the pyrolyzed hydrochar, showing the best surface properties (Specific Surface Area: 1421 m2/g, VP: 0.63 cm3/g, VMESO: 0.10 cm3/g, VMICRO: 0.52 cm3/g), which synergistically makes it a promising system towards adsorption of CO2 (∌90 mg/g) and methylene blue (∌248 mg/g). In addition, promising surface properties can be achieved after direct chemical activation of the raw hazelnut shells, preferably by H3PO4 (Specific Surface Area: 1918 m2/g, VP: 1.34 cm3/g, VMESO: 0.82 cm3/g, VMICRO: 0.50 cm3/g), but this choice is not the smartest, as it does not allow the valorization of the cellulose fraction to levulinic acid. Our approach paves the way for possible uses of these hydrochars originating from the levulinic acid chain for new environmental applications, thus smartly closing the biorefinery loop of the hazelnut shells
    • 

    corecore