979 research outputs found

    Stellar Populations in the Outskirts of the Small Magellanic Cloud: No Outer Edge Yet

    Full text link
    We report the detection of intermediate-age and old stars belonging to the SMC at 6.5 kpc from the SMC center in the southern direction. We show, from the analysis of three high quality 34\arcmin ×\times 33\arcmin CMDs, that the age composition of the stellar population is similar at galactocentric distances of ∼\thicksim4.7 kpc, ∼\thicksim5.6 kpc, and ∼\thicksim6.5 kpc. The surface brightness profile of the SMC follows an exponential law, with no evidence of truncation, all the way out to 6.5 kpc. These results, taken together, suggest that the SMC `disk' population is dominating over a possible old Milky Way-like stellar halo, and that the SMC may be significantly larger than previously thought.Comment: Accepted for publication in ApJ Letters. High resolution figures are available at ftp://ftp.iac.es/out/noe

    The origin of the LMC stellar bar: clues from the SFH of the bar and inner disk

    Full text link
    We discuss the origin of the LMC stellar bar by comparing the star formation histories (SFH) obtained from deep color-magnitude diagrams (CMDs) in the bar and in a number of fields in different directions within the inner disk. The CMDs, reaching the oldest main sequence turnoffs in these very crowded fields, have been obtained with VIMOS on the VLT in service mode, under very good seeing conditions. We show that the SFHs of all fields share the same patterns, with consistent variations of the star formation rate as a function of time in all of them. We therefore conclude that no specific event of star formation can be identified with the formation of the LMC bar, which instead likely formed from a redistribution of disk material that occurred when the LMC disk became bar unstable, and shared a common SFH with the inner disk thereafter. The strong similarity between the SFH of the center and edge of the bar rules out significant spatial variations of the SFH across the bar, which are predicted by scenarios of classic bar formation through buckling mechanisms.Comment: MNRAS Letters, accepte

    Spatially resolved LMC star formation history: I. Outside in evolution of the outer LMC disk

    Full text link
    We study the evolution of three fields in the outer LMC disk Rgc=3.5-6.2 Kpc. Their star formation history indicates a stellar populations gradient such that younger stellar populations are more centrally concentrated. We identify two main star forming epochs, separated by a period of lower activity between ~7 and ~4 Gyr ago. Their relative importance varies from a similar amount of stars formed in the two epochs in the innermost field, to only 40% of the stars formed in the more recent epoch in the outermost field. The young star forming epoch continues to the present time in the innermost field, but lasted only till ~0.8 and 1.3 Gyr ago at Rgc=5.5 degrees and 7.1 degrees, respectively. This gradient is correlated with the measured HI column density and implies an outside-in quenching of the star formation, possibly related to a variation of the size of the HI disk. This could either result from gas depletion due to star formation or ram-pressure stripping, or from to the compression of the gas disk as ram-pressure from the Milky Way halo acted on the LMC interstellar medium. The latter two situations may have occurred when the LMC first approached the Milky Way.Comment: 15 pages, 13 figures, 4 tables. MNRAS, in pres

    The Star Formation History in a SMC field: IAC-star/IAC-pop at work

    Get PDF
    We present a progress report of a project to study the quantitative star formation history (SFH) in different parts of the Small Magellanic Cloud (SMC). We use the information in [(B-R), R] color-magnitude diagrams (CMDs), which reach down to the oldest main-sequence turnoffs and allow us to retrieve the SFH in detail. We show the first results of the SFH in a SMC field located in the Southern direction (at ∼\thicksim1 kpc from the SMC center). This field is particularly interesting because in spite of being located in a place in which the HI column density is very low, it still presents a recent enhancement of star formation.Comment: Poster presented at: Stellar Populations as Building Blocks of Galaxies, Proceedings IAU Symposium No. 241, 200

    Spatial dependence of the Star Formation History in the Central Regions of the Fornax Dwarf Spheroidal Galaxy

    Full text link
    We present the Star Formation History (SFH) and the age-metallicity relation (AMR) in three fields of the Fornax dwarf spheroidal galaxy. They sample a region spanning from the centre of the galaxy to beyond one core radius, which allows studying galactocentric gradients. In all the cases, we found stars as old as 12 Gyr, together with intermediate-age and young stellar populations. The last star formation events, as young as 1 Gyr old, are mainly located in the central region, which may indicate that the gas reservoir in the outer parts of the galaxy would have been exhausted earlier than in the centre or removed by tidal interactions. The AMR is smoothly increasing in the three analyzed regions and similar to each other, indicating that no significant metallicity gradient is apparent within and around the core radius of Fornax. No significant traces of global UV-reionization or local SNe feedback are appreciated in the early SFH of Fornax. Our study is based on FORS1@VLT photometry as deep as I~24.5 and the IAC-star/IAC-pop/MinnIAC suite of codes for the determination of the SFH in resolved stellar populations.Comment: 13 pages, 8 figures, 4 table

    The ACS LCID project. IX. Imprints of the early Universe in the radial variation of the star formation history of dwarf galaxies

    Full text link
    Based on Hubble Space Telescope observations from the Local Cosmology from Isolated Dwarfs project, we present the star formation histories, as a function of galactocentric radius, of four isolated Local Group dwarf galaxies: two dSph galaxies, Cetus and Tucana, and two transition galaxies (dTrs), LGS-3 and Phoenix. The oldest stellar populations of the dSphs and dTrs are, within the uncertainties, coeval (∼13Gyr\sim 13 Gyr) at all galactocentric radii. We find that there are no significative differences between the four galaxies in the fundamental properties (such as the normalized star formation rate or age-metallicity relation) of their outer regions (radii greater than four exponential scale lengths); at large radii, these galaxies consist exclusively of old (≥10.5Gyr\geq 10.5 Gyr) metal-poor stars. The duration of star formation in the inner regions vary from galaxy to galaxy, and the extended central star formation in the dTrs produces the dichotomy between dSph and dTr galaxy types. The dTr galaxies show prominent radial stellar population gradients: the centers of these galaxies host young (≤1Gyr\leq 1 Gyr) populations while the age of the last formation event increases smoothly with increasing radius. This contrasts with the two dSph galaxies. Tucana shows a similar, but milder, gradient, but no gradient in age is detected Cetus. For the three galaxies with significant stellar population gradients, the exponential scale length decreases with time. These results are in agreement with outside-in scenarios of dwarf galaxy evolution, in which a quenching of the star formation toward the center occurs as the galaxy runs out of gas in the outskirts.Comment: Accepted to be published in Ap
    • …
    corecore