4 research outputs found

    Foxm1 regulates neural progenitor fate during spinal cord regeneration

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-05-20, rev-recd 2021-06-24, accepted 2021-07-01, pub-electronic 2021-08-24Article version: VoRPublication status: PublishedFunder: Wellcome Trust; Grant(s): 205894/Z/17/ZFunder: Biotechnology and Biological Sciences Research Council Research Training Support; Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/M011208/1Funder: UKRI|Medical Research Council (MRC); Id: http://dx.doi.org/10.13039/501100000265; Grant(s): MR/M008908/1Funder: Wellcome Trust (ISSF fund)Abstract: Xenopus tadpoles have the ability to regenerate their tails upon amputation. Although some of the molecular and cellular mechanisms that globally regulate tail regeneration have been characterised, tissue‐specific response to injury remains poorly understood. Using a combination of bulk and single‐cell RNA sequencing on isolated spinal cords before and after amputation, we identify a number of genes specifically expressed in the spinal cord during regeneration. We show that Foxm1, a transcription factor known to promote proliferation, is essential for spinal cord regeneration. Surprisingly, Foxm1 does not control the cell cycle length of neural progenitors but regulates their fate after division. In foxm1−/− tadpoles, we observe a reduction in the number of neurons in the regenerating spinal cord, suggesting that neuronal differentiation is necessary for the regenerative process. Altogether, our data uncover a spinal cord‐specific response to injury and reveal a new role for neuronal differentiation during regeneration

    Foxm1 regulates neural progenitor fate during spinal cord regeneration

    No full text
    Xenopus tadpoles have the ability to regenerate their tails upon amputation. Although some of the molecular and cellular mechanisms that globally regulate tail regeneration have been characterised, tissue‐specific response to injury remains poorly understood. Using a combination of bulk and single‐cell RNA sequencing on isolated spinal cords before and after amputation, we identify a number of genes specifically expressed in the spinal cord during regeneration. We show that Foxm1, a transcription factor known to promote proliferation, is essential for spinal cord regeneration. Surprisingly, Foxm1 does not control the cell cycle length of neural progenitors but regulates their fate after division. In foxm1 (−/−) tadpoles, we observe a reduction in the number of neurons in the regenerating spinal cord, suggesting that neuronal differentiation is necessary for the regenerative process. Altogether, our data uncover a spinal cord‐specific response to injury and reveal a new role for neuronal differentiation during regeneration

    Exposure of volunteers to microgravity by dry immersion bed over 21 days results in gene expression changes and adaptation of T cells

    No full text
    The next steps of deep space exploration are manned missions to Moon and Mars. For safe space missions for crew members, it is important to understand the impact of space flight on the immune system. We studied the effects of 21 days dry immersion (DI) exposure on the transcriptomes of T cells isolated from blood samples of eight healthy volunteers. Samples were collected 7 days before DI, at day 7, 14, and 21 during DI, and 7 days after DI. RNA sequencing of CD3+T cells revealed transcriptional alterations across all time points, with most changes occurring 14 days after DI exposure. At day 21, T cells showed evidence of adaptation with a transcriptional profile resembling that of 7 days before DI. At 7 days after DI, T cells again changed their transcriptional profile. These data suggest that T cells adapt by rewiring their transcriptomes in response to simulated weightlessness and that remodeling cues persist when reexposed to normal gravity
    corecore