3 research outputs found

    SIESTA: Efficient Online Continual Learning with Sleep

    Full text link
    In supervised continual learning, a deep neural network (DNN) is updated with an ever-growing data stream. Unlike the offline setting where data is shuffled, we cannot make any distributional assumptions about the data stream. Ideally, only one pass through the dataset is needed for computational efficiency. However, existing methods are inadequate and make many assumptions that cannot be made for real-world applications, while simultaneously failing to improve computational efficiency. In this paper, we propose a novel continual learning method, SIESTA based on wake/sleep framework for training, which is well aligned to the needs of on-device learning. The major goal of SIESTA is to advance compute efficient continual learning so that DNNs can be updated efficiently using far less time and energy. The principal innovations of SIESTA are: 1) rapid online updates using a rehearsal-free, backpropagation-free, and data-driven network update rule during its wake phase, and 2) expedited memory consolidation using a compute-restricted rehearsal policy during its sleep phase. For memory efficiency, SIESTA adapts latent rehearsal using memory indexing from REMIND. Compared to REMIND and prior arts, SIESTA is far more computationally efficient, enabling continual learning on ImageNet-1K in under 2 hours on a single GPU; moreover, in the augmentation-free setting it matches the performance of the offline learner, a milestone critical to driving adoption of continual learning in real-world applications.Comment: Accepted to TMLR 202

    Perception of the undergraduate student about utility of numerical modelling techniques as a didactic resource for scientific research in Civil Engineering

    No full text
    Teaching-learning in civil engineering research courses is a challenge and even more in the current context of the Covid 19 pandemic, taking into account that laboratories and field works are not available. Nevertheless, it is also an opportunity to optimize the use of didactic and technological resources that enable the students to use approaches to study different kinds of engineering problems as well as contributing to their development as researchers. This study allowed to collect, through a validated questionnaire, the perception of 148 students who were in the last year in the Civil Engineering career at the Universidad Privada del Norte, and the results revealed that 61% of them were “in agreement” with the usefulness of numerical modelling techniques as a teaching resource for research

    Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images

    No full text
    Diabetic retinopathy is one of the leading causes of blindness. Its damage is associated with the deterioration of blood vessels in retina. Progression of visual impairment may be cushioned or prevented if detected early, but diabetic retinopathy does not present symptoms prior to progressive loss of vision, and its late detection results in irreversible damages. Manual diagnosis is performed on retinal fundus images and requires experienced clinicians to detect and quantify the importance of several small details which makes this an exhaustive and time-consuming task. In this work, we attempt to develop a computer-assisted tool to classify medical images of the retina in order to diagnose diabetic retinopathy quickly and accurately. A neural network, with CNN architecture, identifies exudates, micro-aneurysms and hemorrhages in the retina image, by training with labeled samples provided by EyePACS, a free platform for retinopathy detection. The database consists of 35126 high-resolution retinal images taken under a variety of conditions. After training, the network shows a specificity of 93.65% and an accuracy of 83.68% on validation process. © Springer International Publishing AG 2017.Trabajo de investigació
    corecore