8,615 research outputs found

    Low-field diffusion magneto-thermopower of a high mobility two-dimensional electron gas

    Full text link
    The low magnetic field diffusion thermopower of a high mobility GaAs-heterostructure has been measured directly on an electrostatically defined micron-scale Hall-bar structure at low temperature (T = 1.6 K) in the low magnetic field regime (B < 1.2 T) where delocalized quantum Hall states do not influence the measurements. The sample design allowed the determination of the field dependence of the thermopower both parallel and perpendicular to the temperature gradient, denoted respectively by Sxx (longitudinal thermopower) and Syx (Nernst-Ettinghausen coefficient). The experimental data show clear oscillations in Sxx and Syx due to the formation of Landau levels for 0.3 T < B < 1.2 T and reveal that Syx is approximately 120 times larger than Sxx at a magnetic field of 1 T, which agrees well with the theoretical prediction.Comment: 4 pages, 4 figure

    Thermopower of Two-Dimensional Electrons at ν\nu = 3/2 and 5/2

    Full text link
    The longitudinal thermopower of ultra-high mobility two-dimensional electrons has been measured at both zero magnetic field and at high fields in the compressible metallic state at filling factor ν=3/2\nu = 3/2 and the incompressible fractional quantized Hall state at ν=5/2\nu = 5/2. At zero field our results demonstrate that the thermopower is dominated by electron diffusion for temperatures below about T=150T = 150 mK. A diffusion dominated thermopower is also observed at ν=3/2\nu = 3/2 and allows us to extract an estimate of the composite fermion effective mass. At ν=5/2\nu = 5/2 both the temperature and magnetic field dependence of the observed thermopower clearly signal the presence of the energy gap of this fractional quantized Hall state. We find that the thermopower in the vicinity of ν=5/2\nu = 5/2 exceeds that recently predicted under the assumption that the entropy of the 2D system is dominated by non-abelian quasiparticle exchange statistics.Comment: 10 pages, 10 figures

    Millimeter wave satellite concepts, volume 1

    Get PDF
    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications

    The Role of Exosomes in Breast Cancer

    Full text link
    corecore