6 research outputs found

    On the transition to efficiency in Minority Games

    Full text link
    The existence of a phase transition with diverging susceptibility in batch Minority Games (MGs) is the mark of informationally efficient regimes and is linked to the specifics of the agents' learning rules. Here we study how the standard scenario is affected in a mixed population game in which agents with the `optimal' learning rule (i.e. the one leading to efficiency) coexist with ones whose adaptive dynamics is sub-optimal. Our generic finding is that any non-vanishing intensive fraction of optimal agents guarantees the existence of an efficient phase. Specifically, we calculate the dependence of the critical point on the fraction qq of `optimal' agents focusing our analysis on three cases: MGs with market impact correction, grand-canonical MGs and MGs with heterogeneous comfort levels.Comment: 12 pages, 3 figures; contribution to the special issue "Viewing the World through Spin Glasses" in honour of David Sherrington on the occasion of his 65th birthda

    Minority games, evolving capitals and replicator dynamics

    Get PDF
    We discuss a simple version of the Minority Game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylised facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated Minority Games with dynamical capitals and several trading strategies per agent.Comment: 19 pages, 7 figure

    Generating functional analysis of Minority Games with real market histories

    Full text link
    It is shown how the generating functional method of De Dominicis can be used to solve the dynamics of the original version of the minority game (MG), in which agents observe real as opposed to fake market histories. Here one again finds exact closed equations for correlation and response functions, but now these are defined in terms of two connected effective non-Markovian stochastic processes: a single effective agent equation similar to that of the `fake' history models, and a second effective equation for the overall market bid itself (the latter is absent in `fake' history models). The result is an exact theory, from which one can calculate from first principles both the persistent observables in the MG and the distribution of history frequencies.Comment: 39 pages, 5 postscript figures, iop styl

    Statistical Mechanics of Dilute Batch Minority Games with Random External Information

    Full text link
    We study the dynamics and statics of a dilute batch minority game with random external information. We focus on the case in which the number of connections per agent is infinite in the thermodynamic limit. The dynamical scenario of ergodicity breaking in this model is different from the phase transition in the standard minority game and is characterised by the onset of long-term memory at finite integrated response. We demonstrate that finite memory appears at the AT-line obtained from the corresponding replica calculation, and compare the behaviour of the dilute model with the minority game with market impact correction, which is known to exhibit similar features.Comment: 22 pages, 6 figures, text modified, references updated and added, figure added, typos correcte

    Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models

    No full text
    corecore