20 research outputs found

    Pertussis resurgence in Toronto, Canada: a population-based study including test-incidence feedback modeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pertussis continues to challenge medical professionals; recently described increases in incidence may be due to age-cohort effects, vaccine effectiveness, or changes in testing patterns. Toronto, Canada has recently experienced increases in pertussis incidence, and provides an ideal jurisdiction for evaluating pertussis epidemiology due to centralized testing. We evaluated pertussis trends in Toronto using all available specimen data, which allowed us to control for changing testing patterns and practices.</p> <p>Methods</p> <p>Data included all pertussis culture and PCR test records for Greater Toronto from 1993 to 2007. We estimated incidence trends using Poisson regression models; complex relationships between disease incidence and test submission were explored with vector autoregressive models.</p> <p>Results</p> <p>From 1993 to 2007, 26988 specimens were submitted for testing; 2545 (9.4%) were positive. Pertussis incidence was 2 per 100,000 from 1993 to 2004 and increased to 10 per 100,000 from 2005-2007, with a concomitant 6-fold surge in test specimen submissions after the introduction of a new, more sensitive PCR assay. The relative change in incidence was less marked after adjustment for testing volumes. Bidirectional feedbacks between test positivity and test submissions were identified.</p> <p>Conclusions</p> <p>Toronto's recent surge in pertussis reflects a true increase in local disease activity; the apparent size of the outbreak has likely been magnified by increasing use of pertussis testing by clinicians, and by improved test sensitivity since 2005. These findings may be applicable to changes in pertussis epidemiology that have been noted elsewhere in North America.</p

    Glycosaminoglycan Binding Facilitates Entry of a Bacterial Pathogen into Central Nervous Systems

    Get PDF
    Certain microbes invade brain microvascular endothelial cells (BMECs) to breach the blood-brain barrier (BBB) and establish central nervous system (CNS) infection. Here we use the leading meningitis pathogen group B Streptococcus (GBS) together with insect and mammalian infection models to probe a potential role of glycosaminoglycan (GAG) interactions in the pathogenesis of CNS entry. Site-directed mutagenesis of a GAG-binding domain of the surface GBS alpha C protein impeded GBS penetration of the Drosophila BBB in vivo and diminished GBS adherence to and invasion of human BMECs in vitro. Conversely, genetic impairment of GAG expression in flies or mice reduced GBS dissemination into the brain. These complementary approaches identify a role for bacterial-GAG interactions in the pathogenesis of CNS infection. Our results also highlight how the simpler yet genetically conserved Drosophila GAG pathways can provide a model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications

    Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial

    Get PDF
    BACKGROUND: Use of heterologous prime-boost COVID-19 vaccine schedules could facilitate mass COVID-19 immunisation. However, we have previously reported that heterologous schedules incorporating an adenoviral vectored vaccine (ChAdOx1 nCoV-19, AstraZeneca; hereafter referred to as ChAd) and an mRNA vaccine (BNT162b2, Pfizer–BioNTech; hereafter referred to as BNT) at a 4-week interval are more reactogenic than homologous schedules. Here, we report the safety and immunogenicity of heterologous schedules with the ChAd and BNT vaccines. METHODS: Com-COV is a participant-blinded, randomised, non-inferiority trial evaluating vaccine safety, reactogenicity, and immunogenicity. Adults aged 50 years and older with no or well controlled comorbidities and no previous SARS-CoV-2 infection by laboratory confirmation were eligible and were recruited at eight sites across the UK. The majority of eligible participants were enrolled into the general cohort (28-day or 84-day prime-boost intervals), who were randomly assigned (1:1:1:1:1:1:1:1) to receive ChAd/ChAd, ChAd/BNT, BNT/BNT, or BNT/ChAd, administered at either 28-day or 84-day prime-boost intervals. A small subset of eligible participants (n=100) were enrolled into an immunology cohort, who had additional blood tests to evaluate immune responses; these participants were randomly assigned (1:1:1:1) to the four schedules (28-day interval only). Participants were masked to the vaccine received but not to the prime-boost interval. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentration (measured by ELISA) at 28 days after boost, when comparing ChAd/BNT with ChAd/ChAd, and BNT/ChAd with BNT/BNT. The heterologous schedules were considered non-inferior to the approved homologous schedules if the lower limit of the one-sided 97·5% CI of the GMR of these comparisons was greater than 0·63. The primary analysis was done in the per-protocol population, who were seronegative at baseline. Safety analyses were done among participants receiving at least one dose of a study vaccine. The trial is registered with ISRCTN, 69254139. FINDINGS: Between Feb 11 and Feb 26, 2021, 830 participants were enrolled and randomised, including 463 participants with a 28-day prime-boost interval, for whom results are reported here. The mean age of participants was 57·8 years (SD 4·7), with 212 (46%) female participants and 117 (25%) from ethnic minorities. At day 28 post boost, the geometric mean concentration of SARS-CoV-2 anti-spike IgG in ChAd/BNT recipients (12 906 ELU/mL) was non-inferior to that in ChAd/ChAd recipients (1392 ELU/mL), with a GMR of 9·2 (one-sided 97·5% CI 7·5 to ∞). In participants primed with BNT, we did not show non-inferiority of the heterologous schedule (BNT/ChAd, 7133 ELU/mL) against the homologous schedule (BNT/BNT, 14 080 ELU/mL), with a GMR of 0·51 (one-sided 97·5% CI 0·43 to ∞). Four serious adverse events occurred across all groups, none of which were considered to be related to immunisation. INTERPRETATION: Despite the BNT/ChAd regimen not meeting non-inferiority criteria, the SARS-CoV-2 anti-spike IgG concentrations of both heterologous schedules were higher than that of a licensed vaccine schedule (ChAd/ChAd) with proven efficacy against COVID-19 disease and hospitalisation. Along with the higher immunogenicity of ChAd/BNT compared with ChAD/ChAd, these data support flexibility in the use of heterologous prime-boost vaccination using ChAd and BNT COVID-19 vaccines. FUNDING: UK Vaccine Task Force and National Institute for Health Research

    Assessment of different quantification metrics of [¹⁸F]-NaF PET/CT images of patients with abdominal aortic aneurysm

    Get PDF
    Background: We aim to assess the spill-in effect and the benefit in quantitative accuracy for [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) using the background correction (BC) technique. Methods: Seventy-two datasets of patients diagnosed with AAA were reconstructed with ordered subset expectation maximization algorithm incorporating point spread function (PSF). Spill-in effect was investigated for the entire aneurysm (AAA), and part of the aneurysm excluding the region close to the bone (AAAexc). Quantifications of PSF and PSF+BC images using different thresholds (% of max. SUV in target regions-of-interest) to derive target-to-background (TBR) values (TBRmax, TBR90, TBR70 and TBR50) were compared at 3 and 10 iterations. Results: TBR differences were observed between AAA and AAAexc due to spill-in effect from the bone into the aneurysm. TBRmax showed the highest sensitivity to the spill-in effect while TBR50 showed the least. The spill-in effect was reduced at 10 iterations compared to 3 iterations, but at the expense of reduced contrast-to-noise ratio (CNR). TBR50 yielded the best trade-off between increased CNR and reduced spill-in effect. PSF+BC method reduced TBR sensitivity to spill-in effect, especially at 3 iterations, compared to PSF (P-value ≤ 0.05). Conclusion: TBR50 is robust metric for reduced spill-in and increased CNR

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Benchmarking of viral bronchiolitis management by general practitioners in the United Kingdom

    No full text
    Viral bronchiolitis is the leading cause of hospitalization in infants in the United Kingdom (UK) with wide variation in rates of hospitalization in different geographical regions of the UK. A potential cause of these differences is variation in primary care management and referral to hospital. This study aimed to prospectively survey general practitioners (GPs) in the UK to provide a benchmark of practice against which future practice can be assessed. An electronic, structured questionnaire was sent to 1,001 geographically representative GPs in primary care centers in the UK, through the market research company MedeConnect, to assess their management of infants with viral bronchiolitis. We measured practice before the 2015 National Institute for Health and Care Excellence (NICE) bronchiolitis guideline against the guideline, to obtain a benchmark of practice. We also used a multivariate analysis to assess GP factors associated with variation in management. Thirty-nine percent of GPs did not refer to any guideline to manage infants with bronchiolitis, 33% did not routinely measure oxygen saturations, 48% prescribed an “inappropriate” (evidence of no benefit) medication, and 62% did not give written guidance to parents. GP factors influencing management included the year the GP qualified, sex, region of practice, and working at a dispensing practice. Up to 75% of GPs' management did not conform to the newly published 2015 NICE bronchiolitis guideline before its publication. There was wide variation in the management of infants with viral bronchiolitis by UK GPs. Most infants with viral bronchiolitis are not managed optimally by GPs and multiple GP factors influenced this management

    Viral bronchiolitis management in hospitals in the UK

    No full text
    Background Viral bronchiolitis is the leading cause of hospitalisation in infants less than a year old. The United Kingdom (UK) National Institute for Health and Care Excellence (NICE) published a guideline for the management of viral bronchiolitis in June 2015. Objectives This study aimed to prospectively survey the management of viral bronchiolitis in hospital Trusts in the UK to provide a baseline of practice prior to the publication of the 2015 NICE bronchiolitis guideline against which future practice can be assessed. Study design An electronic, structured questionnaire was sent to hospital paediatricians in the UK prior to the publication of the NICE bronchiolitis guideline via the Royal College of Paediatrics and Child Health e-portfolio system to assess the quality of Trust’s viral bronchiolitis management guidelines. Results Paediatricians from 111 (65% of all) UK Trusts completed an electronic questionnaire. 91% of Trusts had a bronchiolitis guideline. Overall only 18% of Trusts would be fully compliant with the NICE guideline. Between 43–100% of Trusts would be compliant with different sections of the guideline. There was variation in hospital admission criteria with respect to the need for supplemental oxygen (oxygen saturations &lt;88% to &lt;95%). ‘Unnecessary’ medications (especially bronchodilators, nebulised hypertonic saline and antibiotics) and investigations (chest x-ray and blood gas) were regularly advised. 72% of Trusts advised respiratory virus testing in all hospitalised infants and 64% created bronchiolitis bays to cohort infants. Conclusions There was wide variation in the management of infants with bronchiolitis in Trusts. Most bronchiolitic infants are not managed optimally in hospitals. Future guidelines should include advice on virus testing and isolation/cohorting

    Community seroprevalence of SARS-CoV-2 in children and adolescents in England, 2019–2021

    Get PDF
    Objective To understand community seroprevalence of SARS-CoV-2 in children and adolescents. This is vital to understanding the susceptibility of this cohort to COVID-19 and to inform public health policy for disease control such as immunisation. Design We conducted a community-based cross-sectional seroprevalence study in participants aged 0–18 years old recruiting from seven regions in England between October 2019 and June 2021 and collecting extensive demographic and symptom data. Serum samples were tested for antibodies against SARS-CoV-2 spike and nucleocapsid proteins using Roche assays processed at UK Health Security Agency laboratories. Prevalence estimates were calculated for six time periods and were standardised by age group, ethnicity and National Health Service region. Results Post-first wave (June–August 2020), the (anti-spike IgG) adjusted seroprevalence was 5.2%, varying from 0.9% (participants 10–14 years old) to 9.5% (participants 5–9 years old). By April–June 2021, this had increased to 19.9%, varying from 13.9% (participants 0–4 years old) to 32.7% (participants 15–18 years old). Minority ethnic groups had higher risk of SARS-CoV-2 seropositivity than white participants (OR 1.4, 95% CI 1.0 to 2.0), after adjusting for sex, age, region, time period, deprivation and urban/rural geography. In children <10 years, there were no symptoms or symptom clusters that reliably predicted seropositivity. Overall, 48% of seropositive participants with complete questionnaire data recalled no symptoms between February 2020 and their study visit. Conclusions Approximately one-third of participants aged 15–18 years old had evidence of antibodies against SARS-CoV-2 prior to the introduction of widespread vaccination. These data demonstrate that ethnic background is independently associated with risk of SARS-CoV-2 infection in children. Trial registration number NCT04061382
    corecore