9 research outputs found

    Pump Built-in Hamiltonian Method for Pump-Probe Spectroscopy

    Full text link
    We propose a new method of calculating nonlinear optical responses of interacting electronic systems. In this method, the total Hamiltonian (system + system-pump interaction) is transformed into a different form that (apparently) does not have a system-pump interaction. The transformed Hamiltonian, which we call the pump built-in Hamiltonian, has parameters that depend on the strength of the pump beam. Using the pump built-in Hamiltonian, we can calculate nonlinear responses (responses to probe beams as a function of the pump beam) by applying the {\em linear} response theory. We demonstrate the basic idea of this new method by applying it to a one-dimensional, two-band model, in the case the pump excitation is virtual (coherent excitation). We find that the exponent of the Fermi edge singularity varies with the pump intensity.Comment: 6 page

    Successes and Failures of Kadanoff-Baym Dynamics in Hubbard Nanoclusters

    Full text link
    We study the non-equilibrium dynamics of small, strongly correlated clusters, described by a Hubbard Hamiltonian, by propagating in time the Kadanoff-Baym equations within the Hartree-Fock, 2nd Born, GW and T-matrix approximations. We compare the results to exact numerical solutions. We find that the T-matrix is overall superior to the other approximations, and is in good agreement with the exact results in the low-density regime. In the long time limit, the many-body approximations attain an unphysical steady state which we attribute to the implicit inclusion of infinite order diagrams in a few-body system.Comment: 4 pages, 4 figure

    Three-Body and One-Body Channels of the Auger Core-Valence-Valence decay: Simplified Approach

    Full text link
    We propose a computationally simple model of Auger and APECS line shapes from open-band solids. Part of the intensity comes from the decay of unscreened core-holes and is obtained by the two-body Green's function Gω(2)G^{(2)}_{\omega}, as in the case of filled bands. The rest of the intensity arises from screened core-holes and is derived using a variational description of the relaxed ground state; this involves the two-holes-one-electron propagator GωG_{\omega}, which also contains one-hole contributions. For many transition metals, the two-hole Green's function Gω(2)G^{(2)}_{\omega} can be well described by the Ladder Approximation, but the three-body Green's function poses serious further problems. To calculate GωG_{\omega}, treating electrons and holes on equal footing, we propose a practical approach to sum the series to all orders. We achieve that by formally rewriting the problem in terms of a fictitious three-body interaction. Our method grants non-negative densities of states, explains the apparent negative-U behavior of the spectra of early transition metals and interpolates well between weak and strong coupling, as we demonstrate by test model calculations.Comment: AMS-LaTeX file, 23 pages, 8 eps and 3 ps figures embedded in the text with epsfig.sty and float.sty, submitted to Phys. Rev.

    Fermi system of hard spheres

    No full text
    corecore