6 research outputs found

    Increased prevalence of abnormal vertebral patterning in fetuses and neonates with trisomy 21

    Get PDF
    Purpose: To assess the prevalence of an abnormal number of ribs in a cohort of fetuses and neonates with trisomy 21 and compare this with a subgroup of fetuses without anomalies. Materials and methods: Radiographs of 67 deceased fetuses, neonates, and infants that were diagnosed with trisomy 21 were reviewed. Terminations of pregnancy were included. The control group was composed of 107 deceased fetuses, neonates, and infants without known chromosomal abnormalities, structural malformations, infections or placental pathology. Cases in which the number of thoracic ribs or presence of cervical ribs could not be reliably assessed were excluded. The literature concerning vertebral patterning in trisomy 21 cases and healthy subjects was reviewed. Results: Absent or rudimentary 12th thoracic ribs were found in 26/54 (48.1%) cases with trisomy 21 and cervical ribs were present in 27/47 (57.4%) cases. This prevalence was significantly higher compared to controls (28/100, 28.0%, Χ2(1) = 6.252, p = .012 and 28/97, 28.9%, Χ2(1) = 10.955, p < .001, respectively). Conclusions: Rudimentary or absent 12th thoracic ribs and cervical ribs are significantly more prevalent in deceased fetuses and infants with trisomy 21

    Exploring copy number variants in deceased fetuses and neonates with abnormal vertebral patterns and cervical ribs

    Get PDF
    Background: Cervical patterning abnormalities are rare in the general population, but one variant, cervical ribs, is particularly common in deceased fetuses and neonates. The discrepancy between the incidence in the general population and early mortality is likely due to indirect selection against cervical ribs. The cause for the co-occurrence of cervical ribs and adverse outcome remains unidentified. Copy number variations resulting in gain or loss of specific genes involved in development and patterning could play a causative role. Methods: Radiographs of 374 deceased fetuses and infants, including terminations of pregnancies, stillbirths and neonatal deaths, were assessed. Copy number profiles of 265 patients were determined using single nucleotide polymorphism array. Results: 274/374 patients (73.3%) had an abnormal vertebral pattern, which was associated with congenital abnormalities. Cervical ribs were present in 188/374 (50.3%) and were more common in stillbirths (69/128 [53.9%]) and terminations of pregnancies (101/188 [53.7%]), compared to live births (18/58, 31.0%). Large (likely) deleterious copy number variants and aneuploidies were prevalent in these patients. None of the rare copy number variants were recurrent or overlapped with candidate genes for vertebral patterning. Conclusions: The large variety of copy number variants in deceased fetuses and neonates with similar abnormalities of the vertebral pattern probably reflects the etiological heterogeneity of vertebral patterning abnormalities. This genetic heterogeneity corresponds with the hypothesis that cervical ribs can be regarded as a sign of disruption of critical, highly interactive stages of embryogenesis. The vertebral pattern can probably provide valuable information regarding fetal and neonatal outcome

    Evo-devo of the human vertebral column : on homeotic transformations, pathologies and prenatal selection

    Get PDF
    Homeotic transformations of vertebrae are particularly common in humans and tend to come associated with malformations in a wide variety of organ systems. In a dataset of 1,389 deceased human foetuses and infants a majority had cervical ribs and approximately half of these individuals also had missing twelfth ribs or lumbar ribs. In ~10 % of all cases there was an additional shift of the lumbo-sacral boundary and, hence, homeotic transformations resulted in shifts of at least three vertebral boundaries. We found a strong coupling between the abnormality of the vertebral patterns and the amount and strength of associated malformations, i.e., the longer the disturbance of the vertebral patterning has lasted, the more associated malformations have developed and the more organ systems are affected. The germ layer of origin of the malformations was not significantly associated with the frequency of vertebral patterns. In contrast, we find significant associations with the different developmental mechanisms that are involved in the causation of the malformations, that is, segmentation, neural crest development, left-right patterning, etc. Our results, thus, suggest that locally perceived developmental signals are more important for the developmental outcome than the origin of the cells. The low robustness of vertebral A-P patterning apparent from the large number of homeotic transformations is probably caused by the strong interactivity of developmental processes and the low redundancy of involved morphogens during early organogenesis. Additionally, the early irreversibility of the specification of the A-P identity of vertebrae probably adds to the vulnerability of the process by limiting the possibility for recovery from developmental disturbances. The low developmental robustness of vertebral A-P patterning contrasts with a high robustness of the A-P patterning of the vertebral regions. Not only the order is invariable, also the variation in the number of vertebrae per region is small. This robustness is in agreement with the evolutionary stability of vertebral regions in tetrapods. Finally, we propose a new hypothesis regarding the constancy of the presacral number of vertebrae in mammals
    corecore