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ORIGINAL ARTICLE

Increased prevalence of abnormal vertebral patterning in fetuses and
neonates with trisomy 21

Pauline C. Schuta� , Clara M. A. Ten Broekb� , Titia E. Cohen-Overbeeka , Marianna Bugianic ,
Eric A. P. Steegersa , Alex J. Egginka and Frietson Galisb

aDepartment of Obstetrics and Gynecology, Erasmus MC University Medical Center, Division of Obstetrics and Prenatal Medicine,
Rotterdam, The Netherlands; bNaturalis Biodiversity Center, Leiden, The Netherlands; cDepartment of Pathology, VU University
Medical Centre, Amsterdam, The Netherlands

ABSTRACT
Purpose: To assess the prevalence of an abnormal number of ribs in a cohort of fetuses and
neonates with trisomy 21 and compare this with a subgroup of fetuses without anomalies.
Materials and methods: Radiographs of 67 deceased fetuses, neonates, and infants that were
diagnosed with trisomy 21 were reviewed. Terminations of pregnancy were included. The control
group was composed of 107 deceased fetuses, neonates, and infants without known chromo-
somal abnormalities, structural malformations, infections or placental pathology. Cases in which
the number of thoracic ribs or presence of cervical ribs could not be reliably assessed were
excluded. The literature concerning vertebral patterning in trisomy 21 cases and healthy subjects
was reviewed.
Results: Absent or rudimentary 12th thoracic ribs were found in 26/54 (48.1%) cases with tri-
somy 21 and cervical ribs were present in 27/47 (57.4%) cases. This prevalence was significantly
higher compared to controls (28/100, 28.0%, X2(1)¼ 6.252, p¼ .012 and 28/97, 28.9%,
X2(1)¼ 10.955, p< .001, respectively).
Conclusions: Rudimentary or absent 12th thoracic ribs and cervical ribs are significantly more
prevalent in deceased fetuses and infants with trisomy 21.
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Introduction

The mammalian vertebral column is separated into
cervical, thoracic, lumbar, sacral, and coccygeal
regions. The vertebrae in these different regions
exhibit specific characteristics, allowing each segment
of the spine to perform slightly different functions and
movements. The thoracic vertebrae are the only rib-
bearing vertebrae.

Throughout evolution, the pattern of the vertebral
column in mammals has remained remarkably con-
stant. Particularly in the cervical region, deviation from
the standard number of seven vertebrae is rarely seen,
regardless of the length of the neck [1,2]. Several
researchers hypothesized that the stability of the cer-
vical vertebral number is the result of developmental
constraints or a stabilizing selection against changes in
this number [1,3,4]. The fact that selection against var-
iations in caudally located parts of the vertebral

column is less prominent and thoracolumbar and lum-
bosacral shifts are more common in the general popu-
lation, could be a reflection of the craniocaudal
direction in which the vertebral column is formed
[3,5]. Formation of the cervical region of the vertebral
column starts earlier in embryogenesis than the forma-
tion of the thoracic and lumbar regions. It has been
suggested that the interactivity between the develop-
ing organ systems and the patterning of the embry-
onic axes is higher during early organogenesis than
during later stages [5,6]. This can lead to a higher vul-
nerability to disruptions in embryonic development
during the early stage in which the cervical vertebral
column is formed, compared with the stages in which
the thoracic and lumbar regions of the vertebral col-
umn are formed [7]. A shift at the cervicothoracic junc-
tion, that occurs in the presence of a cervical rib,
could therefore be regarded as a marker for disrupted
embryonic development. This hypothesis is further
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supported by the higher prevalence of cervical ribs in
individuals with adverse outcomes. Several studies
showed a high frequency of (rudimentary) cervical ribs
in specific study populations [8], such as stillbirths and
deceased neonates with and without structural
anomalies [4], children suffering from malignancies [9]
and extinct mammoths [10].

A high prevalence of vertebral patterning anomalies
has also been reported in cases with chromosomal
anomalies [8,11–15]. However, the included study pop-
ulations were relatively small and in only one of these
studies the number of thoracic ribs was compared
with a control group [12].

The aim of this study was to assess the prevalence
of an abnormal number of ribs and vertebrae in a
cohort of deceased fetuses and neonates with trisomy
21 and compare this with a subgroup of deceased
fetuses without anomalies, from the same cohort. The
literature was reviewed in order to retrieve more infor-
mation concerning the underlying cause for differen-
ces in vertebral patterning between trisomy 21 cases
and healthy subjects.

Materials and methods

Between 1990 and 2010 all deceased fetuses and
infants presented for autopsy at the VU Medical
Center were routinely radiographed, both anteropos-
teriorly and laterally (23mA, 70–90 kV, 4–12 s, Agfa
Morsel, Belgium, Gevaert D7DW Structurix films).
Deceased infants, spontaneous miscarriages, stillbirths,
and induced abortions for medical reasons of at least
13 weeks of gestation were included. At least two
observers (F.G., C.B.) independently reviewed the 1.389
radiographs, without prior knowledge of the presence
of structural or chromosomal abnormalities.

Radiographs were assessed as previously described
by Ten Broek et al. [4], entailing the following: the visi-
bility of the phalanges was taken as a measure of reli-
able visualization of the ossification centers. The
number of vertebrae and ribs were counted. If a rib on
the most cranial or most caudal thoracic vertebra had
a length of less than half of the rib of the adjacent
thoracic vertebra, it was considered rudimentary.
Enlarged transverse processes were considered rudi-
mentary cervical ribs if the length of the transverse
process of the seventh cervical vertebra was more
than the transverse process of the first thoracic verte-
bra [5,16,17]. Karyotype was analyzed using fluorescent
in situ hybridization (FISH). Information concerning the
presence and type of additional structural anomalies
was retrieved from standard autopsy reports, stored in
a national pathological archive (PALGA). When

pathological examination of organ systems was not
possible due to maceration, it was categorized as
nonavailable.

The control group consisted of deceased fetuses
and neonates without known chromosomal abnormal-
ities, structural malformations, infections or placental
pathology. Chromosomal analysis was not routinely
performed in the control group. The presence of cer-
vical ribs and the number of thoracic ribs in cases with
trisomy 21 and controls were compared.

Data were analyzed using SPSS statistics (IBM Corp
released 2013. IBM SPSS statistics for windows, version
21.0. Armonk, NY: IBM Corp). Pearson Chi squared test
was applied for the assessment of significance of the
difference in the prevalence of an abnormal rib num-
ber between the two groups. A p-value< .05 was con-
sidered statistically significant.

Results

Of the 1470 radiographs, 104 cases with a gestational
age from 14 to 19 weeks were excluded due to insuffi-
cient ossification. Another 233 cases were excluded
because the cervicothoracic region could not be
assessed. This was mainly caused by overprojection of
the mandibula on the cervical spine, when the head of
the fetus was not correctly positioned, or by inad-
equate radiographical techniques. This resulted in the
assessment of a total of 1133 radiographs. 623 (55.0%)
of these cases were male, 486 females (42.9%), and in
24 (2.1%) the sex was unknown. Karyotype was avail-
able in 162 of the 1133 (14.3%) cases.

In total, 67 of the 1470 (4.6%) cases had been diag-
nosed with trisomy 21, of which 37 (55.2%) were male
and 30 (44.8%) female; 64 fetuses with a gestational
age ranging from 13þ 5 weeks to 38þ 5 weeks and
three neonates. In 13 of the 67 cases, the number of
thoracic vertebrae and ribs could not be reliably
assessed, leaving 54 radiographs available for analysis
of the number of thoracic ribs. In approximately half
of these cases with trisomy 21, the 12th thoracic rib
was absent or rudimentary (26/54, 48.1%), which
occurred bilaterally in the majority (N¼ 25, 96.2%).

In 20 of the 67 cases, the number of cervical verte-
brae and ribs could not be reliably determined, which
resulted in a number of 47 radiographs, available for
analysis of the presence of cervical ribs. Cervical ribs
were seen in 27 of the 47 cases (57.4%). Five (18.5%) of
these were unilateral and 22 (81.5%) bilateral. Fifteen
cases (31.9%) had both rudimentary cervical ribs and
absent or rudimentary 12th thoracic ribs. A radiograph
of a fetus with both rudimentary cervical ribs and
absent 12th thoracic ribs is shown in Figure 1.

2 P. C. SCHUT ET AL.



For comparison, a subgroup of 107 (107/1.470, 7.3%)
deceased fetuses, neonates and infants without struc-
tural or known chromosomal anomalies was selected.
The gestational age of the included fetuses ranged
from 13þ 6–41þ 6 weeks. The majority of this group
consisted of unexplained stillbirths. Other possible
causes of immature delivery and death were cervical
insufficiency or premature rupture of membranes. In
case of termination of pregnancy, only inductions of
labor following intrauterine fetal death or terminations
of pregnancy for maternal indications were included.

Seven cases were excluded because reliable assess-
ment of the thoracic vertebrae and ribs was not pos-
sible and an additional three cases were excluded
because the cervical region could not be reliably
assessed. Within this group, 28 of the 100 (28.0%)
cases had rudimentary or absent 12th thoracic rib(s),
which was often bilaterally (N¼ 25, 89.3%). Cervical
ribs were present in 28 of the 97 (28.9%) cases with-
out anomalies, of which most were bilateral (N¼ 24,
85.7%). Sixteen cases (16.5%) had both cervical rib(s)
and absent or rudimentary 12th thoracic rib(s). These
results are shown in Figure 2.

The differences in the prevalence of both rudimen-
tary or absent 12th thoracic ribs and cervical ribs
between the cases with trisomy 21 and the cases

without anomalies were statistically significant
(X2(1)¼ 6.252, p¼ .012 and X2(1)¼ 10.955, p< .001,
respectively).

Structural anomalies were found in 33 (49.3%) of
the cases with trisomy 21. Cardiovascular anomalies
were the most frequent (17/33, 51.5%). In 23 cases
(34.3%) no structural anomalies were reported and in
another 11 cases (16.4%) no structural anomalies were
confirmed, but one or more organ systems could not
be adequately investigated during autopsy. No statis-
tically significant differences in the presence of cervical
ribs between cases with trisomy 21 with and without
structural anomalies were found (X2(1)¼ 0.264,
p¼ .607). The same applies to the presence of rudi-
mentary or absent 12th thoracic ribs (X2(1)¼ 1.042,
p¼ .307).

Discussion

The study demonstrates that in deceased fetuses, neo-
nates and infants with trisomy 21, an abnormal verte-
bral pattern is very common and significantly more
frequent than in the deceased fetuses, neonates and
infants without structural or known chromosomal
anomalies. In the latter group, the prevalence of cer-
vical ribs and rudimentary or absent 12th thoracic ribs
was relatively high compared to the general popula-
tion, which can be explained by the fact that the con-
trol group consisted of deceased fetuses and neonates
instead of healthy individuals.

In the general population or in patients without
anomalies, a low prevalence of absent or rudimentary
12th thoracic ribs (0.4–6.6%) and cervical ribs
(0.2–6.2%) is reported [5,8,9,17–34]. Bots et al. [17]

Figure 2. The percentage of absent or rudimentary 12th thor-
acic ribs and cervical ribs in fetuses with trisomy 21 compared
with controls.

Figure 1. Radiograph of a fetus with both rudimentary cer-
vical ribs and absent 12th thoracic ribs.
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found a higher prevalence of agenesis of the 12th
thoracic ribs (12.6%) and cervical ribs (37.7%) in
fetuses with a gestational age ranging between 10
and 21 weeks that were electively aborted, but med-
ical data concerning these pregnancies and the moth-
ers were missing. In their study, alizarin red staining
for calcium was used, while most other studies
assessed the vertebral pattern using radiographs,
which might have led to the detection of smaller osse-
ous elements than on radiographs. This is supported
by the detection of cervical ribs at a considerably ear-
lier age in fetuses that had been stained with alizarin
red compared to the detection on fetal radiographs
(youngest estimated age of 10 versus 14 weeks) [17].
The main findings of the studies addressing the pres-
ence of an abnormal rib number in cases with trisomy
21 are presented in Table 1.

In these studies, the prevalence of absent 12th
thoracic ribs ranged between 18.9 and 37.5%. Possible
explanations for the lower prevalence of absent 12th
thoracic ribs in some of these studies compared with
the present study (48.1%), might be under-reporting
of rudimentary 12th ribs, which in this study was clas-
sified under the same heading as agenesis of the 12th
thoracic ribs.

The prevalence of cervical ribs in cases with trisomy
21 ranged from 12.5 to 57.1% in previously reported
studies [14,15,35]. The prevalence of cervical ribs in
this study population was only slightly higher (57.4%)
and not very different from the study of Castori et al.
[15], who included the largest study population.

Phenotypic differences between the included study
populations could perhaps be partly responsible for the
reported variety in prevalence of an abnormal number
of thoracic ribs and cervical ribs. The severity of add-
itional structural anomalies in trisomy 21 cases varies
between individuals and it seems plausible that the
study population of Willich et al. [36], who included
live born patients up to the age of 17, rather than
deceased fetuses, had a milder phenotype and there-
fore less severe disruptions in vertebral patterning
than the fetuses and neonates included in the present
study.

The prevalence of an abnormal vertebral pattern
was not higher in trisomy 21 cases with additional
structural anomalies, compared to those without add-
itional anomalies. In the light of the hypothesized
negative effect of dysregulation of the anteroposterior
axis on other developmental processes, a higher
prevalence of an abnormal vertebral pattern would be
expected in cases with additional structural anomalies.
The small number of included cases might explain the
inability to detect a significant difference.

The pathophysiology of the skeletal anomalies and
other (phenotypic) anomalies found in patients with
trisomy 21 remains unknown. Garcia-Ram�ırez et al. [37]
examined cartilage from different bone structures in
29 human fetuses with trisomy 21 and 13 controls.
The microscopic appearance of the costochondral
junctions differed significantly and showed hyper-
trophic disorganization and a reduction in proliferative
and resting zones in trisomy 21 cases. They suggested
that the increased number of hypertrophic cells might
be the result of failure of progression to bone forma-
tion. Perhaps the absence of the 12th thoracic ribs
could be related to this mechanism, which however
does not explain the prevalence of cervical ribs. In
addition, the simultaneously occurring absence of 12th
thoracic ribs and presence of cervical ribs in approxi-
mately half of the cases makes it even more likely that
the underlying process responsible for the anteropos-
terior patterning is disturbed.

In mammals, the anteroposterior patterning is regu-
lated by Hox genes. These 39 genes are an evolution-
ary conserved family of genes that play a key role in
the development of anteroposterior axis, but also in
other physiologic and pathologic processes, such as
oncogenesis [38,39]. Several experiments on chicks
and mice have shown that Hox-gene mutations can
lead to homeotic transformations [40]. In homozygous
Hoxa4, Hoxa5, and Hoxb8-mutant mice, cervical ribs
had developed on the seventh cervical vertebra
[41–43]. Although the human Hox genes are not
located on chromosome 21, it has been proposed that
overexpression of genes from the trisomic chromo-
some lead to a generalized transcriptional

Table 1. The reported prevalence of cervical ribs and absent 12th thoracic ribs in cases with trisomy 21, assessed on
radiographs.
Reference N Study population Agenesis of 12th thoracic rib(s) Cervical ribs

Beber, 1965 [11] 36 Patients with trisomy 21, max 7 years old 11/36 (30.6%) NR
Willich, 1977 [36] 101 Patients with trisomy 21, 1 day to 17 years old Six cases with mosaicism 18/95 (18.9%) NR
Edwards, 1988 [12] 30 Infants with trisomy 21 11/30 (36.7%), 10 bilateral NR
Keeling, 1999 [13] 8 Hydropic fetuses with trisomy 21, GA 14–30 weeks 3/8 (37.5%) 1/8 (12.5%)
Furtado, 2011 [14] 7 Stillbirths with trisomy 21, GA >¼ 20 weeks NR 4/7 (57.1%)
Castori, 2015 [15] 102 Therapeutic second trimester abortions with trisomy 21 29/86 (33.7%) 41/86 (47.7%)

GA: gestational age; NR: not reported.
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misregulation [44]. Research on gene expression in
humans and mice with trisomy 21 not only showed a
significant different expression pattern of genes
located on chromosome 21, but also of genes mapped
to other chromosomes [45–47]. Furthermore, micro-
array analysis of mandibular precursors in Down syn-
drome mice showed that six Hox genes were amongst
the most dysregulated genes [48]. Therefore, dysregu-
lation of Hox gene expression in cases with trisomy 21
may lead to disruptions in vertebral patterning. So far,
this hypothesis has not been confirmed and should be
further investigated in future studies.

The fetal vertebral column and the number of thor-
acic ribs can be assessed using 2- and 3-dimensional
ultrasonography [21,49]. The value of prenatal 3-
dimensional ultrasonography for the assessment of
cervical ribs has not been investigated. Although an
abnormal number of ribs can be found in healthy indi-
viduals, the presence of an abnormal number of thor-
acic ribs in a fetus should alert the sonographer that
other structural or chromosomal anomalies may be
present. Prospective studies are required for the evalu-
ation of the association between an abnormal number
of ribs found on prenatal ultrasound and other struc-
tural or chromosomal anomalies.

Limitations of this study were the absence of a
healthy control group and the limited availability of
karyotyping in fetuses without structural malforma-
tions. Therefore, it cannot be assumed that all subjects
from the control group had a normal karyotype. It
seems unlikely though, that fetuses with trisomy 21 or
other severe chromosomal aberrations were included
in this group, because pathological examination was
performed in all cases and even mild anomalies,
including dysmorphic features, were registered. Within
our study population, this subgroup seemed the most
suitable subpopulation that was available for compari-
son. As the differences in prevalence of rudimentary or
absent 12th thoracic ribs and presence of cervical ribs
between these two groups were already statistically
significant, these will most likely become even more
evident when compared with healthy subjects.

Strengths of this study were the availability of
pathologic reports of all cases, the assessment of the
radiographs by two different observers and the inclu-
sion of a control group without structural and known
chromosomal anomalies. The included number of
cases was also relatively large, compared with previ-
ously reported studies.

Based on the study results and the available litera-
ture, it can be concluded that the prevalence of an
abnormal vertebral pattern is significantly higher in
fetuses and neonates with trisomy 21 compared

with fetuses without anomalies and compared with
the general population. Further elucidation of the
underlying pathophysiological mechanism, which
could be due to dysregulation of Hox gene expression,
is needed.

Acknowledgements

We thank Ron Otsen and Jaap van Veldhuisen for the high-
quality radiographs, Irma Varela-Lasheras and Jessica Bots for
digitizing and Alexander Bakker for analyzing the radio-
graphs. Patient data and radiographs were used according
to the guidelines of the Medical Ethics Committee of the VU
University Medical Center and patient anonymity was strictly
maintained. Parental written informed consent was obtained
for patients and data were handled in a coded and com-
pletely anonymous fashion, according to Dutch national eth-
ical guidelines (Code for Proper Secondary Use of Human
Data, Dutch Federation of Medical Scientific Societies; http://
www.federa.org/codes-conduct).

Disclosure statement

The authors report no conflicts of interest.

ORCID

Pauline C. Schut http://orcid.org/0000-0002-3898-5701
Clara M. A. Ten Broek http://orcid.org/0000-0001-7492-
4327
Titia E. Cohen-Overbeek http://orcid.org/0000-0001-9949-
1476
Marianna Bugiani http://orcid.org/0000-0001-7689-3042
Eric A. P. Steegers http://orcid.org/0000-0001-6658-9274
Frietson Galis http://orcid.org/0000-0003-3659-0965

References

[1] Galis F. Why do almost all mammals have seven cer-
vical vertebrae? Developmental constraints, Hox
genes, and cancer. J Exp Zool. 1999;285:19–26.

[2] Hautier L, Weisbecker V, S�anchez-Villagra MR, et al.
Skeletal development in sloths and the evolution of
mammalian vertebral patterning. Proc Natl Acad Sci
USA. 2010;107:18903–18908.

[3] Narita Y, Kuratani S. Evolution of the vertebral formu-
lae in mammals: a perspective on developmental con-
straints. J Exp Zool B Mol Dev Evol. 2005;304:91–106.

[4] Ten Broek CM, Bakker AJ, Varela-Lasheras I, et al. Evo-
Devo of the human vertebral column: on homeotic
transformations, pathologies and prenatal selection.
Evol Biol. 2012;39:456–471.

[5] Galis F, Van Dooren TJM, Feuth JD, et al. Extreme
selection in humans against homeotic transformations
of cervical vertebrae. Evolution. 2006;60:2643–2654.

[6] Galis F, Metz JA. Testing the vulnerability of the phy-
lotypic stage: on modularity and evolutionary conser-
vation. J Exp Zool. 2001;291:195–204.

THE JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE 5

http://www.federa.org/codes-conduct
http://www.federa.org/codes-conduct


[7] Galis F, Metz JAJ. Evolutionary novelties: the making
and breaking of pleiotropic constraints. Integr Comp
Biol. 2007;47:409–419.

[8] Schut PC, Cohen-Overbeek TE, Galis F, et al. Adverse
fetal and neonatal outcome and an abnormal verte-
bral pattern: a systematic review. Obstet Gynecol
Surv. 2016;71:741–750.

[9] Merks JHM, Smets AM, Van Rijn RR, et al. Prevalence
of RIB anomalies in normal Caucasian children and
childhood cancer patients. Eur J Med Genet.
2005;48:113–129.

[10] Reumer JW, Ten Broek CM, Galis F. Extraordinary inci-
dence of cervical ribs indicates vulnerable condition
in Late Pleistocene mammoths. PeerJ. 2014;2:e318.

[11] Beber BA. Absence of a rib in Down’s syndrome.
Lancet. 1965;2:289.

[12] Edwards DK, Berry CC, Hilton SW. Trisomy 21 in new-
born infants: chest radiographic diagnosis. Radiology.
1988;167:317–318.

[13] Keeling JW, Kjaer I. Cervical ribs: useful marker of
monosomy X in fetal hydrops. Pediatr Dev Pathol.
1999;2:119–123.

[14] Furtado LV, Thaker HM, Erickson LK, et al. Cervical ribs
are more prevalent in stillborn fetuses than in live-
born infants and are strongly associated with fetal
aneuploidy. Pediatr Dev Pathol. 2011;14:431–437.

[15] Castori M, Servadei F, Laino L, et al. Axial skeletogene-
sis in human autosomal aneuploidies: a radiographic
study of 145 second trimester fetuses. Am J Med
Genet A. 2016;170:676–687.

[16] Bagnall KM, Harris PF, Jones PRM. A radiographic
study of variations of the human fetal spine. Anat
Rec. 1984;208:265–270.

[17] Bots J, Wijnaendts LCD, Delen S, et al. Analysis of cer-
vical ribs in a series of human fetuses. J Anat.
2011;219:403–409.

[18] Zierhut HA, Murati MA, Holm T, et al. Association of
rib anomalies and childhood cancers. Cancer Res.
2011;105:1392–1395.

[19] Nakajima A, Usui A, Hosokai Y, et al. The prevalence
of morphological changes in the thoracolumbar spine
on whole-spine computed tomographic images.
Insights Imaging. 2014;5:77–83.

[20] Schumacher R, Mai A, Gutjahr P. Association of rib
anomalies and malignancy in childhood. Eur J Pediatr.
1992;151:432–434.

[21] Hershkovitz R. Prenatal diagnosis of isolated abnormal
number of ribs. Ultrasound Obstet Gynecol. 2008;32:
506–509.

[22] Southam AH, Bythell WJ. Cervical ribs in children. Br
Med J. 1924;2:844–845.

[23] Etter M. Osseous abnormalities of the thoracic cage
seen in forty thousand consecutive chest photoroent-
genograms. Am J Roentgenol. 1944;51:359–363.

[24] Sycamore L. Common congenital anomalies of the
bony thorax. Am J Roentgenol. 1944;51:593–599.

[25] Singh HK. Incidence of congenital rib anomalies.
Indian J Chest Dis. 1973;15:157–164.

[26] Kimonis VE, Mehta SG, DiGiovanna JJ, et al.
Radiological features in 82 patients with nevoid basal
cell carcinoma (NBCC or Gorlin) syndrome. Genet
Med. 2004;6:495–502.

[27] Gulekon IN, Turgut HB. The prevalence of cervical rib
in Anatolian population. Gazi Med J. 1999;10:149–152.

[28] Erken E, Ozer HTE, Gulek B, et al. The association
between cervical rib and sacralization. Spine (Phila Pa
1976). 2002;27:1659–1664.

[29] Loder RT, Huffman G, Toney E, et al. Abnormal rib
number in childhood malignancy: implications for
the scoliosis surgeon. Spine (Phila Pa 1976). 2007;32:
904–910.

[30] Brewin J, Hill M, Ellis H. The prevalence of cervical ribs
in a London population. Clin Anat. 2009;22:331–336.

[31] Bokhari RF, Al-Sayyad MJ, Baeesa SS. Prevalence of
cervical ribs and elongated transverse processes in
Saudi Arabia. Saudi Med J. 2012;33:66–69.

[32] Venkatesan V, Prabhu KP, Ram Kumar B, et al.
Incidence of cervical rib in Chennai population. World
J Med Sci. 2014;10:250–253.

[33] Walden MJ, Adin ME, Visagan R, et al. Cervical ribs:
identification on MRI and clinical relevance. Clin
Imaging. 2013;37:938–941.

[34] Viertel VG, Intrapiromkul J, Maluf F, et al. Cervical ribs:
a common variant overlooked in CT imaging. Am J
Neuroradiol. 2012;33:2191–2194.

[35] Keeling JW, Hansen BF, Kjaer I. Pattern of malforma-
tions in the axial skeleton in human trisomy 21
fetuses. Am J Med Genet. 1997;68:466–471.

[36] Willich E, Fuhr U, Kroll W. Skeletal changes in Down’s
syndrome. A correlation between radiological and
cytogenetic findings. Fortschr Geb Rontgenstr
Nuklearmed. 1977;127:135–142.

[37] Garcia-Ram�ırez M, Toran N, Carrascosa A, et al.
Down’s syndrome: altered chondrogenesis in fetal rib.
Pediatr Res. 1998;44:93–98.

[38] Mallo M, Alonso CR. The regulation of Hox gene
expression during animal development. Development.
2013;140:3951–3963.

[39] Quinonez SC, Innis JW. Human HOX gene disorders.
Mol Genet Metab. 2014;111:4–15.

[40] Wellik DM. Hox genes and vertebrate axial pattern.
Curr Top Dev Biol. 2009;88:257–278.

[41] Horan GSB, Ram�ırez-Solis R, Featherstone MS, et al.
Compound mutants for the paralogous hoxa-4, hoxb-
4, and hoxd-4 genes show more complete homeotic
transformations and a dose-dependent increase in the
number of vertebrae transformed. Genes Dev.
1995;9:1667–1677.

[42] Jeannotte L, Lemieux M, Charron J, et al. Specification
of axial identity in the mouse: role of the Hoxa-5
(Hox1.3) gene. Genes Dev. 1993;7:2085–2096.

[43] Charit�e J, De Graaff W, Deschamps J. Specification of
multiple vertebral identities by ectopically expressed
Hoxb-8. Dev Dyn. 1995;204:13–21.

[44] FitzPatrick DR, Ramsay J, McGill NI, et al.
Transcriptome analysis of human autosomal trisomy.
Hum Mol Genet. 2002;11:3249–3256.

[45] Rozovski U, Jonish-Grossman A, Bar-Shira A, et al.
Genome-wide expression analysis of cultured tropho-
blast with trisomy 21 karyotype. Hum Reprod. 2007;
22:2538–2545.

[46] Laffaire J, Rivals I, Dauphinot L, et al. Gene expression
signature of cerebellar hypoplasia in a mouse model

6 P. C. SCHUT ET AL.



of Down syndrome during postnatal development.
BMC Genomics. 2009;10:138.

[47] Sommer CA, Pavarino-Bertelli EC, Goloni-Bertollo EM,
et al. Identification of dysregulated genes in lympho-
cytes from children with Down syndrome. Genome.
2008;51:19–29.

[48] Billingsley CN, Allen JR, Baumann DD, et al. Non-triso-
mic homeobox gene expression during craniofacial

development in the Ts65Dn mouse model of
Down syndrome. Am J Med Genet A. 2013;161A:
1866–1874.

[49] Gindes L, Benoit B, Pretorius DH, et al.
Abnormal number of fetal ribs on 3-dimensional
ultrasonography: associated anomalies and
outcomes in 75 fetuses. J Ultrasound Med. 2008;27:
1263–1271.

THE JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE 7


	Increased prevalence of abnormal vertebral patterning in fetuses and neonates with trisomy 21
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements
	Disclosure statement
	References


