476 research outputs found

    Direct Inference of SNP Heterozygosity Rates and Resolution of LOH Detection

    Get PDF
    Single nucleotide polymorphisms (SNPs) have been increasingly utilized to investigate somatic genetic abnormalities in premalignancy and cancer. LOH is a common alteration observed during cancer development, and SNP assays have been used to identify LOH at specific chromosomal regions. The design of such studies requires consideration of the resolution for detecting LOH throughout the genome and identification of the number and location of SNPs required to detect genetic alterations in specific genomic regions. Our study evaluated SNP distribution patterns and used probability models, Monte Carlo simulation, and real human subject genotype data to investigate the relationships between the number of SNPs, SNP HET rates, and the sensitivity (resolution) for detecting LOH. We report that variances of SNP heterozygosity rate in dbSNP are high for a large proportion of SNPs. Two statistical methods proposed for directly inferring SNP heterozygosity rates require much smaller sample sizes (intermediate sizes) and are feasible for practical use in SNP selection or verification. Using HapMap data, we showed that a region of LOH greater than 200 kb can be reliably detected, with losses smaller than 50 kb having a substantially lower detection probability when using all SNPs currently in the HapMap database. Higher densities of SNPs may exist in certain local chromosomal regions that provide some opportunities for reliably detecting LOH of segment sizes smaller than 50 kb. These results suggest that the interpretation of the results from genome-wide scans for LOH using commercial arrays need to consider the relationships among inter-SNP distance, detection probability, and sample size for a specific study. New experimental designs for LOH studies would also benefit from considering the power of detection and sample sizes required to accomplish the proposed aims

    Single nucleotide polymorphism-based genome-wide chromosome copy change, loss of heterozygosity, and aneuploidy in Barrett's esophagus neoplastic progression.

    Get PDF
    Chromosome copy gain, loss, and loss of heterozygosity (LOH) involving most chromosomes have been reported in many cancers; however, less is known about chromosome instability in premalignant conditions. 17p LOH and DNA content abnormalities have been previously reported to predict progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). Here, we evaluated genome-wide chromosomal instability in multiple stages of BE and EA in whole biopsies. Forty-two patients were selected to represent different stages of progression from BE to EA. Whole BE or EA biopsies were minced, and aliquots were processed for flow cytometry and genotyped with a paired constitutive control for each patient using 33,423 single nucleotide polymorphisms (SNP). Copy gains, losses, and LOH increased in frequency and size between early- and late-stage BE (P 30% in early and late stages, respectively. A set of statistically significant events was unique to either early or late, or both, stages, including previously reported and novel abnormalities. The total number of SNP alterations was highly correlated with DNA content aneuploidy and was sensitive and specific to identify patients with concurrent EA (empirical receiver operating characteristic area under the curve = 0.91). With the exception of 9p LOH, most copy gains, losses, and LOH detected in early stages of BE were smaller than those detected in later stages, and few chromosomal events were common in all stages of progression. Measures of chromosomal instability can be quantified in whole biopsies using SNP-based genotyping and have potential to be an integrated platform for cancer risk stratification in BE

    Sensitization to gliadin induces moderate enteropathy and insulitis in nonobese diabetic-DQ8 mice

    Get PDF
    Celiac disease (CD) is frequently diagnosed in patients with type 1 diabetes (T1D), and T1D patients can exhibit Abs against tissue transglutaminase, the auto-antigen in CD. Thus, gliadin, the trigger in CD, has been suggested to have a role in T1D pathogenesis. The objective of this study was to investigate whether gliadin contributes to enteropathy and insulitis in NOD-DQ8 mice, an animal model that does not spontaneously develop T1D. Gliadin-sensitized NOD-DQ8 mice developed moderate enteropathy, intraepithelial lymphocytosis, and barrier dysfunction, but not insulitis. Administration of anti-CD25 mAbs before gliadin-sensitization induced partial depletion of CD25+Foxp3+ T cells and led to severe insulitis, but did not exacerbate mucosal dysfunction. CD4+T cells isolated from pancreatic lymph nodes of mice that developed insulitis showed increased proliferation and proinflammatory cytokines after incubation with gliadin but not with BSA. CD4+ T cells isolated from nonsensitized controls did not response to gliadin or BSA. In conclusion, gliadin sensitization induced moderate enteropathy in NOD-DQ8 mice. However, insulitis development required gliadin-sensitization and partial systemic depletion of CD25+Foxp3+ T cells. This humanized murine model provides a mechanistic link to explain how the mucosal intolerance to a dietary protein can lead to insulitis in the presence of partial regulatory T cell deficiency.Facultad de Ciencias Exacta

    Cell proliferation, cell cycle abnormalities, and cancer outcome in patients with Barrett’s esophagus: A long-term prospective study

    Get PDF
    Purpose: Elevated cellular proliferation and cell cycle abnormalities, which have been associated with premalignant lesions, may be caused by inactivation of tumor suppressor genes. We measured proliferative and cell cycle fractions of biopsies from a cohort of patients with Barrett's esophagus to better understand the role of proliferation in early neoplastic progression and the association between cell cycle dysregulation and tumor suppressor gene inactivation. Experimental Design: Cell proliferative fractions (determined by Ki67/DNA multiparameter flow cytometry) and cell cycle fractions (DNA content flow cytometry) were measured in 853 diploid biopsies from 362 patients with Barrett's esophagus. The inactivation status of CDKN2A and TP53 was assessed in a subset of these biopsies in a cross-sectional study. A prospective study followed 276 of the patients without detectable aneuploidy for an average of 6.3 years with esophageal adenocarcinoma as an endpoint. Results: Diploid S and 4N (G2/tetraploid) fractions were significantly higher in biopsies with TP53 mutation and LOH. CDKN2A inactivation was not associated with higher Ki67-positive, diploid S, G1, or 4N fractions. High Ki67-positive and G1 phase fractions were not associated with the future development of esophageal adenocarcinoma (p=0.13 and p=0.15, respectively), while high diploid S phase and 4N fractions were (p=0.03 and p<0.0001, respectively). Conclusions: High Ki67-positive proliferative fractions were not associated with inactivation of CDKN2A and TP53 or future development of cancer in our cohort of patients with Barrett's esophagus. Bi-allelic inactivation of TP53 was associated with elevated 4N fractions, which have been associated with the future development of esophageal adenocarcinoma

    p16 Mutation Spectrum in the Premalignant Condition Barrett's Esophagus

    Get PDF
    Background: Mutation, promoter hypermethylation and loss of heterozygosity involving the tumor suppressor gene p16 (CDKN2a/INK4a) have been detected in a wide variety of human cancers, but much less is known concerning the frequency and spectrum of p16 mutations in premalignant conditions. Methods and Findings: We have determined the p16 mutation spectrum for a cohort of 304 patients with Barrett’s esophagus, a premalignant condition that predisposes to the development of esophageal adenocarcinoma. Forty seven mutations were detected by sequencing of p16 exon 2 in 44 BE patients (14.5%) with a mutation spectrum consistent with that caused by oxidative damage and chronic inflammation. The percentage of patients with p16 mutations increased with increasing histologic grade. In addition, samples from 3 out of 19 patients (15.8%) who underwent esophagectomy were found to have mutations. Conclusions: The results of this study suggest the environment of the esophagus in BE patients can both generate an

    A MCP1 fusokine with CCR2-specific tumoricidal activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CCL2 chemokine is involved in promoting cancer angiogenesis, proliferation and metastasis by malignancies that express CCR2 receptor. Thus the CCL2/CCR2 axis is an attractive molecular target for anticancer drug development.</p> <p>Methods</p> <p>We have generated a novel fusion protein using GMCSF and an N-terminal truncated version of MCP1/CCL2 (6-76) [hereafter GMME1] and investigated its utility as a CCR2-specific tumoricidal agent.</p> <p>Results</p> <p>We found that distinct to full length CCL2 or its N-truncated derivative (CCL2 5-76), GMME1 bound to CCR2 on mouse lymphoma EG7, human multiple myeloma cell line U266, or murine and human medulloblastoma cell lines, and led to their death by apoptosis. We demonstrated that GMME1 specifically blocked CCR2-associated STAT3 phosphorylation and up-regulated pro-apoptotic BAX. Furthermore, GMME1 significantly inhibited EG7 tumor growth in C57BL/6 mice, and induced apoptosis of primary myeloma cells from patients.</p> <p>Conclusion</p> <p>Our data demonstrate that GMME1 is a fusokine with a potent, CCR2 receptor-mediated pro-apoptotic effect on tumor cells and could be exploited as a novel biological therapy for CCR2<sup>+ </sup>malignancies including lymphoid and central nervous system malignancies.</p

    Humanized celiac-prone epithelium in vitro express MHC-II and co-stimulatory molecules necessary for gluten peptide presentation

    Get PDF
    Background: The role intestinal epithelial cells (IECs) play in the breakdown of tolerance to gluten at an early stage in celiac disease (CeD) is unclear. Epithelial stress is a feature of CeD, and although the triggers are largely unknown, it is accompanied by expression of several markers that could be involved in initiation of inflammatory responses. IECs have been shown to express MHC class II (MHC-II) molecules and participate in antigen presentation in several models. Whether IECs can participate in gluten peptide presentation, the major environmental trigger in celiac disease, is unknown. To study this, a model expressing human MHC-II, HLA DQ8 or HLADQ2, would be required. Aims: To develop organoid monolayers from transgenic mice expressing human celiac risk genes: HLA-DQ8 and -DQ2. To investigate conditions leading to the induction of epithelial MHC-II and its main co-stimulatory molecules, CD80, CD86 and CD40, that could enable early gluten peptide presentation.Instituto de Estudios Inmunológicos y Fisiopatológico

    ‘One door closes, a next door opens up somewhere’: The learning of one Olympic synchronised swimmer

    Get PDF
    Although training in sport is necessary to reach Olympic status, a conditioned body is not the only outcome. Athletes also learn how to be Olympians. This learning involves taking on certain ways of acting, thinking and valuing. Such learning has implications beyond competition, as athletes eventually retire from elite sport and devote their time to other activities. This paper examines processes of learning and transition using the case of Amelia, a former Olympic synchronised swimmer. Through two in-depth interviews, empirical material was generated which focused on the learning that took place during this athlete’s career and after, during her transition to paid employment. A cultural view of learning was used as the theoretical frame to understand the athlete’s experiences. Our reading suggests that the athlete learned in various ways to be productive. Some of these ways of being were useful after retirement; others were less compatible. In fact, Amelia used a two-year period after retirement to reconstruct herself. Key to her eventual successful transition was to distance herself from the sport and to critically reflect upon her sporting experiences. We thus recommend that those involved with high-performance athletes foster a more balanced perspective that acknowledges and promotes ways of being beyond athletic involvement
    corecore