25 research outputs found

    Aeroelastic Analysis of B75 blade - Blatigue Project

    Get PDF

    Aeroelastic Analysis of B49 blade-Blatigue Project

    Get PDF
    This report is part of the EUDP Blatigue project, Fast and efficient fatigue test of large wind turbine blades. In the study the Siemens B49 blade loads are computed using HAWC2 aeroelastic code. The blade is coupled in a generic wind turbine tower and nacelle structure within HAWC2. Furthermore the basic DTU WE controller is used. The aim is to evaluate the blade fatigue and ultimate loads based on the IEC 61400-1 ed.3 standard. The results are further used in the project for the set-up and testing of the real blade at the DTU Risø Large Scale Facility. In the first part the model properties are summarized. Then the IEC load cases are simulated using the HAWC2 code and the analysis is focused on the blade performance. A blade load comparison between HAWC2 and the Siemens results is presented together with a summary of the uncertainties related with the present analysis. Finally, an analysis is performed on a potential way to compute the blade lifetime fatigue damage based on few time series instead of running the full design load basis. The work is funded by the EUDP project BLATIGUE: Fast and efficient fatigue test of large wind turbine blades under project number 64016- 0023 which is gratefully acknowledged. Several contributions have been made in the model set-up as well as in the interpretation of the results from Torben J. Larsen, Anders M. Hansen, Kim Branner, Perer Berring and Federico Belloni who are gratefully acknowledged

    Vertical Axis Wind Turbine Design Load Cases Investigation and Comparison with Horizontal Axis Wind Turbine

    Get PDF
    AbstractThe paper studies the applicability of the IEC 61400-1 ed.3, 2005 International Standard of wind turbine minimum design requirements in the case of an onshore Darrieus VAWT and compares the results of basic Design Load Cases (DLCs) with those of a 3-bladed HAWT. The study is based on aeroelastic computations using the HAWC2 aero-servo-elastic code A 2-bladed 5 MW VAWT rotor is used based on a modified version of the DeepWind rotor For the HAWT simulations the NREL 3-bladed 5 MW reference wind turbine model is utilized Various DLCs are examined including normal power production, emergency shut down and parked situations, from cut-in to cut-out and extreme wind conditions. The ultimate and 1 Hz equivalent fatigue loads of the blade root and turbine base bottom are extracted and compared in order to give an insight of the load levels between the two concepts. According to the analysis the IEC 61400-1 ed.3 can be used to a large extent with proper interpretation of the DLCs and choice of parameters such as the hub-height. In addition, the design drivers for the VAWT appear to differ from the ones of the HAWT. Normal operation results in the highest tower bottom and blade root loads for the VAWT, where parked under storm situation (DLC 6.2) and extreme operating gust (DLC 2.3) are more severe for the HAWT. Turbine base bottom and blade root edgewise fatigue loads are much higher for the VAWT compared to the HAWT. The interpretation and simulation of DLC 6.2 for the VAWT lead to blade instabilities, while extreme wind shear and extreme wind direction change are not critical in terms of loading of the VAWT structure. Finally, the extreme operating gust wind condition simulations revealed that the emerging loads depend on the combination of the rotor orientation and the time stamp that the frontal passage of gust goes through the rotor plane

    OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine

    Get PDF
    This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system were validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of waveexcitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.This work was supported by the U.S. Department of Energy under Contract No. DEAC36- 08GO28308 with the National Renewable Energy Laboratory. Some of the funding for the work was provided by the DOE Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office

    Verification of a Numerical Model of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Within OC5 Phase III

    Get PDF
    The main objective of the Offshore Code Comparison Collaboration Continuation, with Correlation (OC5) project, is validation of aero-hydro-servo-elastic simulation tools for offshore wind turbines (OWTs) through comparison of simulated results to the response data of physical systems. Phase III of the OC5 project analyzes the Senvion 5M wind turbine supported by the OWEC Quattropod from the alpha ventus offshore wind farm. This paper shows results of the verification of the OWT models (code-to-code comparison). A subsequent publication will focus on their validation (comparison of simulated results to measured physical system response data). Based on the available data, the participants of Phase III set up numerical models of the OWT in their simulation tools. It was necessary to verify and to tune these models. The verification and tuning were performed against an OWT model available at the University of Stuttgart - Stuttgart Wind Energy (SWE) and documentation provided by Senvion and OWEC Tower. A very good match was achieved between the results from the reference SWE model and models set up by OC5 Phase III participants
    corecore