43 research outputs found

    The systematic approach to describing conformational rearrangements in G-quadruplexes

    No full text
    <p>Conformational changes in DNA G-quadruplex (GQ)-forming regions affect genome function and, thus, compose an interesting research topic. Computer modelling may yield insight into quadruplex folding and rearrangement, particularly molecular dynamics simulations. Here, we show that specific parameters, which are distinct from those commonly used in DNA conformational analyses, must be introduced for adequate interpretation and, most importantly, convenient visual representation of the quadruplex modelling results. We report a set of parameters that comprehensively and systematically describe GQ geometry in dynamics. The parameters include those related to quartet planarity, quadruplex twist, and quartet stacking; they are used to quantitatively characterise various types of quadruplexes and rearrangements, such as quartet distortion/disruption or deviation/bulging of a single nucleotide from the quartet plane. Our approach to describing conformational changes in quadruplexes using the new parameters is exemplified by telomeric quadruplex rearrangement, and the benefits of applying this approach to analyse other structures are discussed.</p

    Data on secondary structures and ligand interactions of G-rich oligonucleotides that defy the classical formula for G4 motifs

    No full text
    The data provided in this article are related to the research article "The expanding repertoire of G4 DNA structures" [1]. Secondary structures of G-rich oligonucleotides (ONs) that represent “imperfect” G-quadruplex (G4) motifs, i.e., contain truncated or interrupted G-runs, were analyzed by optical methods. Presented data on ON structures include circular dichroism (CD) spectra, thermal difference spectra (TDS) and UV -melting curves of the ONs; and rotational relaxation times (RRT) of ethidium bromide (EtBr) complexes with the ONs. TDS, CD spectra and UV-melting curves can be used to characterize the topologies and thermal stabilities of the ON structures. RRTs are roughly proportional to the hydrodynamic volumes of the complexes and thus can be used to distinguish between inter- and intramolecular ON structures. Presented data on ON interactions with small molecules include fluorescence emission spectra of the G4 sensor thioflavin T (ThT) in complexes with the ONs, and CD-melting curves of the ONs in the presence of G4-stabilizing ligands N-methylmesoporphyrin IX (NMM) and pyridostatin (PDS). These data should be useful for comparative analyses of classical G4s and “defective”G4s, such as quadruplexes with vacancies or bulges

    Spontaneous DNA Synapsis by Forming Noncanonical Intermolecular Structures

    No full text
    We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement

    A Solution to the Common Problem of the Synthesis and Applications of Hexachlorofluorescein Labeled Oligonucleotides.

    No full text
    A common problem of the preparation of hexachlorofluorescein labeled oligonucleotides is the transformation of the fluorophore to an arylacridine derivative under standard ammonolysis conditions. We show here that the arylacridine byproduct with distinct optical characteristics cannot be efficiently separated from the major product by HPLC or electrophoretic methods, which hampers precise physicochemical experiments with the labeled oligonucleotides. Studies of the transformation mechanism allowed us to select optimal conditions for avoiding the side reaction. The novel method for the post-synthetic deblocking of hexachlorofluorescein-labeled oligodeoxyribonucleotides described in this paper prevents the formation of the arylacridine derivative, enhances the yield of target oligomers, and allows them to be proper real-time PCR probes

    Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding.

    No full text
    New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA

    Aureolic Acid Group of Agents as Potential Antituberculosis Drugs

    No full text
    Mycobacterium tuberculosis is one of the most dangerous pathogens. Bacterial resistance to antituberculosis drugs grows each year, but searching for new drugs is a long process. Testing for available drugs to find active against mycobacteria may be a good alternative. In this work, antibiotics of the aureolic acid group were tested on a model organism Mycobacterium smegmatis. We presumed that antibiotics of this group may be potential G4 ligands. However, this was not confirmed in our analyses. We determined the antimicrobial activity of these drugs and revealed morphological changes in the cell structure upon treatment. Transcriptomic analysis documented increased expression of MSMEG_3743/soj and MSMEG_4228/ftsW, involved in cell division. Therefore, drugs may affect cell division, possibly disrupting the function of the Z-ring and the formation of a septum. Additionally, a decrease in the transcription level of several indispensable genes, such as nitrate reductase subunits (MSMEG_5137/narI and MSMEG_5139/narX) and MSMEG_3205/hisD was shown. We concluded that the mechanism of action of aureolic acid and its related compounds may be similar to that bedaquiline and disturb the NAD+/NADH balance in the cell. All of this allowed us to conclude that aureolic acid derivatives can be considered as potential antituberculosis drugs.715-73

    DNA G-Quadruplexes Contribute to CTCF Recruitment

    No full text
    G-quadruplex (G4) sites in the human genome frequently colocalize with CCCTC-binding factor (CTCF)-bound sites in CpG islands (CGIs). We aimed to clarify the role of G4s in CTCF positioning. Molecular modeling data suggested direct interactions, so we performed in vitro binding assays with quadruplex-forming sequences from CGIs in the human genome. G4s bound CTCF with Kd values similar to that of the control duplex, while respective i-motifs exhibited no affinity for CTCF. Using ChIP-qPCR assays, we showed that G4-stabilizing ligands enhance CTCF occupancy at a G4-prone site in STAT3 gene. In view of the reportedly increased CTCF affinity for hypomethylated DNA, we next questioned whether G4s also facilitate CTCF recruitment to CGIs via protecting CpG sites from methylation. Bioinformatics analysis of previously published data argued against such a possibility. Finally, we questioned whether G4s facilitate CTCF recruitment by affecting chromatin structure. We showed that three architectural chromatin proteins of the high mobility group colocalize with G4s in the genome and recognize parallel-stranded or mixed-topology G4s in vitro. One of such proteins, HMGN3, contributes to the association between G4s and CTCF according to our bioinformatics analysis. These findings support both direct and indirect roles of G4s in CTCF recruitment
    corecore