65 research outputs found

    Measuring gene expression divergence: the distance to keep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression divergence is a phenotypic trait reflecting evolution of gene regulation and characterizing dissimilarity between species and between cells and tissues within the same species. Several distance measures, such as Euclidean and correlation-based distances have been proposed for measuring expression divergence.</p> <p>Results</p> <p>We show that different distance measures identify different trends in gene expression patterns. When comparing orthologous genes in eight rat and human tissues, the Euclidean distance identified genes uniformly expressed in all tissues near the expression background as genes with the most conserved expression pattern. In contrast, correlation-based distance and generalized-average distance identified genes with concerted changes among homologous tissues as those most conserved. On the other hand, correlation-based distance, Euclidean distance and generalized-average distance highlight quite well the relatively high similarity of gene expression patterns in homologous tissues between species, compared to non-homologous tissues within species.</p> <p>Conclusions</p> <p>Different trends exist in the high-dimensional numeric data, and to highlight a particular trend an appropriate distance measure needs to be chosen. The choice of the distance measure for measuring expression divergence can be dictated by the expression patterns that are of interest in a particular study.</p> <p>Reviewers</p> <p>This article was reviewed by Mikhail Gelfand, Eugene Koonin and Subhajyoti De (nominated by Sarah Teichmann).</p

    Control of the mean number of false discoveries, Bonferroni and stability of multiple testing

    Full text link
    The Bonferroni multiple testing procedure is commonly perceived as being overly conservative in large-scale simultaneous testing situations such as those that arise in microarray data analysis. The objective of the present study is to show that this popular belief is due to overly stringent requirements that are typically imposed on the procedure rather than to its conservative nature. To get over its notorious conservatism, we advocate using the Bonferroni selection rule as a procedure that controls the per family error rate (PFER). The present paper reports the first study of stability properties of the Bonferroni and Benjamini--Hochberg procedures. The Bonferroni procedure shows a superior stability in terms of the variance of both the number of true discoveries and the total number of discoveries, a property that is especially important in the presence of correlations between individual pp-values. Its stability and the ability to provide strong control of the PFER make the Bonferroni procedure an attractive choice in microarray studies.Comment: Published at http://dx.doi.org/10.1214/07-AOAS102 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similarity searches in genome-wide numerical data sets

    Get PDF
    We present psi-square, a program for searching the space of gene vectors. The program starts with a gene vector, i.e., the set of measurements associated with a gene, and finds similar vectors, derives a probabilistic model of these vectors, then repeats search using this model as a query, and continues to update the model and search again, until convergence. When applied to three different pathway-discovery problems, psi-square was generally more sensitive and sometimes more specific than the ad hoc methods developed for solving each of these problems before. REVIEWERS: This article was reviewed by King Jordan, Mikhail Gelfand, Nicolas Galtier and Sarah Teichmann

    Evolutionary history of bacteriophages with double-stranded DNA genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reconstruction of evolutionary history of bacteriophages is a difficult problem because of fast sequence drift and lack of omnipresent genes in phage genomes. Moreover, losses and recombinational exchanges of genes are so pervasive in phages that the plausibility of phylogenetic inference in phage kingdom has been questioned.</p> <p>Results</p> <p>We compiled the profiles of presence and absence of 803 orthologous genes in 158 completely sequenced phages with double-stranded DNA genomes and used these gene content vectors to infer the evolutionary history of phages. There were 18 well-supported clades, mostly corresponding to accepted genera, but in some cases appearing to define new taxonomic groups. Conflicts between this phylogeny and trees constructed from sequence alignments of phage proteins were exploited to infer 294 specific acts of intergenome gene transfer.</p> <p>Conclusion</p> <p>A notoriously reticulate evolutionary history of fast-evolving phages can be reconstructed in considerable detail by quantitative comparative genomics.</p> <p>Open peer review</p> <p>This article was reviewed by Eugene Koonin, Nicholas Galtier and Martijn Huynen.</p

    Mutational hotspots in the TP53 gene and, possibly, other tumor suppressors evolve by positive selection

    Get PDF
    BACKGROUND: The mutation spectra of the TP53 gene and other tumor suppressors contain multiple hotspots, i.e., sites of non-random, frequent mutation in tumors and/or the germline. The origin of the hotspots remains unclear, the general view being that they represent highly mutable nucleotide contexts which likely reflect effects of different endogenous and exogenous factors shaping the mutation process in specific tissues. The origin of hotspots is of major importance because it has been suggested that mutable contexts could be used to infer mechanisms of mutagenesis contributing to tumorigenesis. RESULTS: Here we apply three independent tests, accounting for non-uniform base compositions in synonymous and non-synonymous sites, to test whether the hotspots emerge via selection or due to mutational bias. All three tests consistently indicate that the hotspots in the TP53 gene evolve, primarily, via positive selection. The results were robust to the elimination of the highly mutable CpG dinucleotides. By contrast, only one, the least conservative test reveals the signature of positive selection in BRCA1, BRCA2, and p16. Elucidation of the origin of the hotspots in these genes requires more data on somatic mutations in tumors. CONCLUSION: The results of this analysis seem to indicate that positive selection for gain-of-function in tumor suppressor genes is an important aspect of tumorigenesis, blurring the distinction between tumor suppressors and oncogenes. REVIEWERS: This article was reviewed by Sandor Pongor, Christopher Lee and Mikhail Blagosklonny

    The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope

    Get PDF
    The spindle pole body (SPB) is the sole site of microtubule nucleation in Saccharomyces cerevisiae; yet, details of its assembly are poorly understood. Integral membrane proteins including Mps2 anchor the soluble core SPB in the nuclear envelope. Adjacent to the core SPB is a membrane-associated SPB substructure known as the half-bridge, where SPB duplication and microtubule nucleation during G1 occurs. We found that the half-bridge component Mps3 is the budding yeast member of the SUN protein family (Sad1-UNC-84 homology) and provide evidence that it interacts with the Mps2 C terminus to tether the half-bridge to the core SPB. Mutants in the Mps3 SUN domain or Mps2 C terminus have SPB duplication and karyogamy defects that are consistent with the aberrant half-bridge structures we observe cytologically. The interaction between the Mps3 SUN domain and Mps2 C terminus is the first biochemical link known to connect the half-bridge with the core SPB. Association with Mps3 also defines a novel function for Mps2 during SPB duplication
    corecore