6 research outputs found
Biofilm formation initiating rotifer-specific biopolymer and its predicted components
The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development
External modulation of Rotimer exudate secretion in monogonant rotifers
The Rotimer, a rotifer-specific biopolymer, is an exogenic bioactive exudate secreted by different monogonant species (e.g. Euchlanis dilatata or Lecane bulla). The production of this viscoelastic biomolecule is induced by different micro-particles, thereby forming a special Rotimer-Inductor Conglomerate (RIC) in a web format. In this case, the water insoluble Carmine crystals, filtered to size (max. diameter was 50 µm), functioned as an inductor. The RIC production is an adequate empirical indicator to follow up this filamentous biopolymer secretion experientially; moreover, this procedure is very sensitive to the environmental factors (temperature, pH, metals and possible natural pollutant agents). The above mentioned species show completely different reactions to these factors, except to the presence of calcium and to the modulating effects of different drugs. One of the novelties of this work is that the Rotimer secretion and consequently, the RIC-formation is a mutually obligatory and evolutionary calcium-dependent process in the concerned monogonants. This in vivo procedure needs calcium, both for the physiology of animals and for fiber formation, particularly in the latter case. The conglomerate covered area (%) and the detection of the longest filament (mm) of the given RIC were the generally and simultaneously applied methods in the current modulating experiments. Exploring the regulatory (e.g. calcium-dependency) and stimulating (e.g. Lucidril effect) possibilities of biopolymer secretion are the basis for optimizing the RIC-production capacities of these micro-metazoans
The interacting rotifer-biopolymers are anti- and disaggregating agents for human-type beta-amyloid in vitro
Neurodegeneration-related human-type beta-amyloid 1-42 aggregates (H-Aβ) are one of the biochemical markers and executive molecules in Alzheimer's disease. The exogenic rotifer-specific biopolymer, namely Rotimer, has a protective effect against H-Aβ toxicity on Euchlanis dilatata and Lecane bulla monogonant rotifers. Due to the external particle-dependent secreting activity of these animals, this natural exudate exists in a bound form on the surface of epoxy-metal beads, named as Rotimer Inductor Conglomerate (RIC). In this current work the experiential in vitro molecular interactions between Rotimer and Aβs are presented. The RIC form was uniformly used against H-Aβ aggregation processes in stagogram- and fluorescent-based experiments. These well-known cell-toxic aggregates stably and quickly (only taking a few minutes) bind to RIC. The epoxy beads (as carriers) alone or the scrambled version of H-Aβ (with random amino acid sequence) were the ineffective and inactive negative controls of this experimental system. The RIC has significant interacting, anti-aggregating and disaggregating effects on H-Aβ. To detect these experiments, Bis-ANS and Thioflavin T were applied during amyloid binding, two aggregation-specific functional fluorescent dyes with different molecular characteristics. This newly described empirical interaction of Rotimer with H-Aβ is a potential starting point and source of innovation concerning targeted human- and pharmaceutical applications.
Keywords: Aggregation; Biopolymer; Euchlanis dilatata; Monogonant; Rotifer; beta-amyloi
Biofilm formation initiating rotifer-specific biopolymer and its predicted components
The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development