18 research outputs found
Complete metabolic response after Partially Ablative Radiotherapy (PAR) for bulky retroperitoneal liposarcoma: A case report
: In the management of symptomatic inoperable retroperitoneal sarcomas (RPS), palliative radiotherapy (RT) is a potential treatment option. However, the efficacy of low doses used in palliative RT is limited in these radioresistant tumors. Therefore, exploring dose escalation strategies targeting specific regions of the tumor may enhance the therapeutic effect of RT in relieving or preventing symptoms. In this case report, we present the case of an 87-year-old patient with rapidly growing undifferentiated liposarcoma in the retroperitoneum, where surgical and systemic therapies were ruled out due to age and comorbidities. RT was administered using volumetric modulated arc therapy, delivering 20 Gy in 4 fractions twice daily to the macroscopic tumor and 40 Gy in 4 fractions twice daily (simultaneous integrated boost) to the central part of the tumor (Gross Tumor Volume minus 2 cm). An 18F-FDG-PET-CT scan performed after RT demonstrated a complete metabolic response throughout the entire tumor mass. Although the patient eventually succumbed to metastatic spread to the bone, liver, and lung after 9 months, no local disease progression or pain/obstructive symptoms were observed. This case highlights the technical and clinical feasibility of delivering ablative doses of RT to the central region of the tumor and suggests the potential for achieving a complete metabolic response and durable tumor control
Pain Relief after Stereotactic Radiotherapy of Pancreatic Adenocarcinoma: An Updated Systematic Review
Severe pain is frequent in patients with locally advanced pancreatic ductal adenocarcinoma (PDCA). Stereotactic body radiotherapy (SBRT) provides high local control rates in these patients. The aim of this review was to systematically analyze the available evidence on pain relief in patients with PDCA. We updated our previous systematic review through a search on PubMed of papers published from 1 January 2018 to 30 June 2021. Studies with full available text, published in English, and reporting pain relief after SBRT on PDCA were included in this analysis. Statistical analysis was carried out using the MEDCALC statistical software. All tests were two-sided. The I-2 statistic was used to quantify statistical heterogeneity (high heterogeneity level: >50%). Nineteen papers were included in this updated literature review. None of them specifically aimed at assessing pain and/or quality of life. The rate of analgesics reduction or suspension ranged between 40.0 and 100.0% (median: 60.3%) in six studies. The pooled rate was 71.5% (95% CI, 61.6-80.0%), with high heterogeneity between studies (Q(2) test: p < 0.0001; I-2 = 83.8%). The rate of complete response of pain after SBRT ranged between 30.0 and 81.3% (median: 48.4%) in three studies. The pooled rate was 51.9% (95% CI, 39.3-64.3%), with high heterogeneity (Q(2) test: p < 0.008; I-2 = 79.1%). The rate of partial plus complete pain response ranged between 44.4 and 100% (median: 78.6%) in nine studies. The pooled rate was 78.3% (95% CI, 71.0-84.5%), with high heterogeneity (Q(2) test: p < 0.0001; I-2 = 79.4%). A linear regression with sensitivity analysis showed significantly improved overall pain response as the EQD2 alpha/beta:10 increases (p: 0.005). Eight papers did not report any side effect during and after SBRT. In three studies only transient acute effects were recorded. The results of the included studies showed high heterogeneity. However, SBRT of PDCA resulted reasonably effective in producing pain relief in these patients. Further studies are needed to assess the impact of SBRT in this setting based on Patient-Reported Outcomes
Stereotactic radiotherapy of nodal oligometastases from prostate cancer: a prisma-compliant systematic review
Androgen deprivation therapy (ADT) is the standard treatment of metastatic prostate cancer (PCa). However, metastases-directed therapies can delay the initiation or switch of systemic treatments and allow local control (LC) and prolonged progression-free survival (PFS), particularly in patients with lymph nodes (LN) oligometastases. We performed a systematic review on stereotactic body radiotherapy (SBRT) in this setting. Papers reporting LC and/or PFS were selected. Data on ADT-free survival, overall survival, and toxicity were also collected from the selected studies. Fifteen studies were eligible (414 patients), 14 of them were retrospective analyses. A high heterogeneity was observed in terms of patient selection and treatment. In one study SBRT was delivered as a single 20 Gy fraction, while in the others the median total dose ranged between 24 and 40 Gy delivered in 3-6 fractions. LC and PFS were reported in 15 and 12 papers, respectively. LC was reported as a crude percentage in 13 studies, with 100% rate in seven and 63.2-98.0% in six reports. Five studies reported actuarial LC (2-year LC: 70.0-100%). PFS was reported as a crude rate in 11 studies (range 27.3-68.8%). Actuarial 2-year PFS was reported in four studies (range 30.0-50.0%). SBRT tolerability was excellent, with only two patients with grade 3 acute toxicity and two patients with grade 3 late toxicity. SBRT for LN oligorecurrences from PCa in safe and provides optimal LC. However, the long-term effect on PFS and OS is still unclear as well as which patients are the best candidate for this approach
Prophylactic Radiotherapy of Hip Heterotopic Ossification: A Narrative Mini Review
Evidence on prophylactic radiotherapy (RT) in hip heterotopic ossification (HO) is sparse and conflicting. The aim of this literature review was to collect and summarize the available data on RT efficacy in preventing hip HO. The results of this review show that RT is effective in the prevention of hip HO, albeit with large variability across series. Effective prophylactic RT requires optimal treatment fields and time intervals with surgery. On the contrary, there is no clear evidence on the optimal timing (post-operative versus pre-operative RT). Comparisons between prophylactic RT and use of non-steroidal antiinflammatory drugs showed conflicting results, although most were in favor of RT. In conclusion, RT is an established prophylactic treatment for hip HO. However, optimal dose, technique and timing remain unclear, as does the usefulness of combining RT with drugs
Adaptive Individualized high-dose preoperAtive (AIDA) chemoradiation in high-risk rectal cancer: a phase II trial
Purpose To evaluate the pathological complete response (pCR) rate of locally advanced rectal cancer (LARC) after adaptive high-dose neoadjuvant chemoradiation (CRT) based on (18) F-fluorodeoxyglucose positron emission tomography/computed tomography ((18) F-FDG-PET/CT).Methods The primary endpoint was the pCR rate. Secondary endpoints were the predictive value of (18) F-FDG-PET/CT on pathological response and acute and late toxicity. All patients performed (18) F-FDG-PET/CT at baseline (PET0) and after 2 weeks during CRT (PET1). The metabolic PET parameters were calculated both at the PET0 and PET1. The total CRT dose was 45 Gy to the pelvic lymph nodes and 50 Gy to the primary tumor, corresponding mesorectum, and to metastatic lymph nodes. Furthermore, a sequential boost was delivered to a biological target volume defined by PET1 with an additional dose of 5 Gy in 2 fractions. Capecitabine (825 mg/m(2) twice daily orally) was prescribed for the entire treatment duration.Results Eighteen patients (13 males, 5 females; median age 55 years [range, 41-77 years]) were enrolled in the trial. Patients underwent surgical resection at 8-9 weeks after the end of neoadjuvant CRT. No patient showed grade > 1 acute radiation-induced toxicity. Seven patients (38.8%) had TRG = 0 (complete regression), 5 (27.0%) showed TRG = 2, and 6 (33.0%) had TRG = 3. Based on the TRG results, patients were classified in two groups: TRG = 0 (pCR) and TRG = 1, 2, 3 (non pCR). Accepting p < 0.05 as the level of significance, at the Kruskal-Wallis test, the medians of baseline-MTV, interim-SUVmax, interim-SUVmean, interim-MTV, interim-TLG, and the MTV reduction were significantly different between the two groups. (18) F-FDG-PET/CT was able to predict the pCR in 77.8% of cases through compared evaluation of both baseline PET/CT and interim PET/CT.Conclusions Our results showed that a dose escalation on a reduced target in the final phase of CRT is well tolerated and able to provide a high pCR rate
Further Clarification of Pain Management Complexity in Radiotherapy: Insights from Modern Statistical Approaches
Background: The primary objective of this study was to assess the adequacy of analgesic care in radiotherapy (RT) patients, with a secondary objective to identify predictive variables associated with pain management adequacy using a modern statistical approach, integrating the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and the Classification and Regression Tree (CART) analysis. Methods: This observational, multicenter cohort study involved 1387 patients reporting pain or taking analgesic drugs from 13 RT departments in Italy. The Pain Management Index (PMI) served as the measure for pain control adequacy, with a PMI score < 0 indicating suboptimal management. Patient demographics, clinical status, and treatment-related factors were examined to discern the predictors of pain management adequacy. Results: Among the analyzed cohort, 46.1% reported inadequately managed pain. Non-cancer pain origin, breast cancer diagnosis, higher ECOG Performance Status scores, younger patient age, early assessment phase, and curative treatment intent emerged as significant determinants of negative PMI from the LASSO analysis. Notably, pain management was observed to improve as RT progressed, with a greater discrepancy between cancer (33.2% with PMI < 0) and non-cancer pain (73.1% with PMI < 0). Breast cancer patients under 70 years of age with non-cancer pain had the highest rate of negative PMI at 86.5%, highlighting a potential deficiency in managing benign pain in younger patients. Conclusions: The study underscores the dynamic nature of pain management during RT, suggesting improvements over the treatment course yet revealing specific challenges in non-cancer pain management, particularly among younger breast cancer patients. The use of advanced statistical techniques for analysis stresses the importance of a multifaceted approach to pain management, one that incorporates both cancer and non-cancer pain considerations to ensure a holistic and improved quality of oncological care
Assessment of p.Phe508del-CFTR functional restoration in pediatric primary cystic fibrosis airway epithelial cells
© 2018 Sutanto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Background Mutations in the cystic fibrosis transmembrane regulator (CFTR) gene can reduce function of the CFTR ion channel activity and impair cellular chloride secretion. The gold standard method to assess CFTR function of ion transport using the Ussing chamber requires a high number of airway epithelial cells grown at air-liquid interface, limiting the application of this method for high throughput screening of potential therapeutic compounds in primary airway epithelial cells (pAECs) featuring less common CFTR mutations. This study assessed an alternative approach, using a small scale halide assay that can be adapted for a personalized high throughput setting to analyze CFTR function of pAEC. Methods Pediatric pAECs derived from children with CF (pAEC CF ) were established and expanded as monolayer cultures, before seeding into 96-well plates for the halide assay. Cells were then transduced with an adenoviral construct containing yellow fluorescent protein (eYFP) reporter gene, alone or in combination with either wild-type CFTR (WT-CFTR) or p.Phe508-del CFTR. Four days post transduction, cells were stimulated with forskolin and genistein, and assessed for quenching of the eYFP signal following injection of iodide solution into the assay media. Results Data showed that pAEC CF can express eYFP at high efficiency following transduction with the eYFP construct. The halide assay was able to discriminate functional restoration of CFTR in pAEC CF treated with either WT-CFTR construct or the positive controls syntaxin 8 and B-cell receptor-associated protein 31 shRNAs. Significance The current study demonstrates that the halide assay can be adapted for pediatric pAEC CF to evaluate restoration of CFTR function. With the ongoing development of small molecules to modulate the folding and/or activity of various mutated CFTR proteins, this halide assay presents a small-scale personalized screening platform that could assess therapeutic potential of molecules across a broad range of CFTR mutations
2-(Dialkylamino)-4H-1-benzopyran-4-one derivatives modifychloride conductance in CFTR expressing cells
Some 2-(diethylamino)-7-hydroxy-4H-1-benzopyran-4-one derivatives, potentially useful as activators of the cystic fibrosis
transmembrane conductance regulator (CFTR), were prepared. The synthesized compounds were tested, together with others 2-
(dialkylamino)-7-hydroxybenzopyran-4-one derivatives, by measuring their capacity to modify the kinetics of iodide influx in Fisher
rat thyroid cells expressing wild type CFTR and the halide-sensitive yellow fluorescent protein. Among the tested compounds the
dinitrile derivatives 8 and 9 are endowed with an activity comparable to the reference compound apigenin
Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel gene. CF mutations like deltaF508 cause both a mistrafficking of the protein and a gating defect. Other mutations, like G551D, cause only a gating defect. Our aim was to find chemical compounds able to stimulate the activity of CFTR mutant proteins by screening a library containing approved drugs. Two thousand compounds were tested on Fischer rat thyroid cells coexpressing deltaF508-CFTR and a halide-sensitive yellow fluorescent protein (YFP) after correction of the trafficking defect by low-temperature incubation. The YFP-based screening allowed the identification of the antihypertensive 1,4-dihydropyridines (DHPs) nifedipine, nicardipine, nimodipine, isradipine, nitrendipine, felodipine, and niguldipine as compounds able to activate deltaF508-CFTR. This effect was not derived from the inhibition of voltage-dependent Ca2+ channels, the pharmacological target of antihypertensive DHPs. Indeed, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-2(trifluoromethylphenyl)pyridine-5-carboxylate (BayK-8644), a DHP that is effective as an activator of such channels, also stimulated CFTR activity. DHPs were also effective on the G551D-CFTR mutant by inducing a 16- to 45-fold increase of the CFTR Cl- currents. DHP activity was confirmed in airway epithelial cells from patients with CF. DHPs may represent a novel class of therapeutic agents able to correct the defect caused by a set of CF mutations
The role of training simulators in interventional radiation therapy (brachytherapy) training: A narrative review
Simulators have revolutionized medical education and training across various disciplines, offering unique advantages in skill acquisition and performance improvement. In the context of interventional radiation therapy (IRT), simulators have emerged as valuable tools for training healthcare professionals in these complex procedures. This narrative review summarized the available evidence on the use of simulators in IRT training, highlighting their impact on proficiency, engagement, and self-confidence as well as their benefits for medical physicists and radiation therapists.
A systematic search was conducted in PubMed, resulting in inclusion of 10 papers published since 2009, with 5 of them published since 2020. Publications originated from centers in USA, Ireland, Switzerland, Canada, and Japan, covering a range of IRT settings, including general, prostate, and cervical IRT.
The review demonstrated that simulators provide a controlled and realistic environment for skill acquisition, allowing healthcare professionals to practice procedures, optimize image quality, and enhance technical proficiency. The use of simulators addressed the barriers associated with limited caseload and procedural complexity, ultimately contributing to improved education and IRT training. While cost considerations may exist, simulators offer long-term cost-effective solutions, balancing the potential benefits in improving educational outcomes and patient care.
Overall, simulators play a crucial role in IRT training, enhancing the skills and competence of healthcare providers and improving access to quality IRT care worldwide. Future research should focus on evaluating the long-term impact of simulation-based training on clinical outcomes and patient satisfaction, exploring different simulation models and training approaches, and addressing region-specific barriers to optimize the utilization of IRT