66 research outputs found

    Ponthibák vizsgálata széles tiltott sávú anyagokban a standard sűrűségfunkcionál elméleteken túli módszerekkel = Investigation of point defects in wide band gap materials by methods beyond the standard density functional theory

    Get PDF
    Tématerületek szerinti eredményeim röviden felsorolva: 1) Hibaazonosítás félvezetőkben: A szilíciumkarbidban és az alumíniumnitridben számos ponthibát sikerült azonosítanom a kísérleti csoportokkal együttműködve. 2)Spintronika, kvantumoptika: Nitrogén-vakancia a gyémántban az egyik legjelentősebb szilárdtestbeli kvantumbit. A fenti hiba gerjesztési mechanizmusát, spinsűrűség-eloszlását és számos más tulajdonságát sikerült számításaimmal megérteni. A semleges nitrogén-vakancia elektro-lumineszcencia jelét a számításaim segítségével sikerült megérteni, amelyet a Nature Photonics folyóiratban szeretnénk leközölni (bírálóknál van a kézirat). Emellett Physical Review Letters és Physical Review B Rapid Communication, valamint több meghívott szerzős cikkben közöltem eredményeimet. 3)Napelem: A napelemekkel hatásfokának lehetséges javításával kapcsolatos eredményeinket a Nano Letters közölte. Az eredményekről a Materials Research Society folyóiratában recenziót közöltek. 4)Biomarker: A biomarker témában elsősorban a SiC nanoszerkezeteket vizsgáltuk meg. Eredményeink magyarázatot adnak számos friss kísérleti tényre. Az evvel kapcsolatos eredmények az Applied Physics Letters és a The Journal of Chemical Physics folyóiratokban jelentek meg. 5) Nanoelektronika: A nanoelektronikában fontos Si nanohuzalokban egy áttöréshez vezető elrendezést vázoltunk fel, amelynek segítségével a kisméretű nanohuzalok vezetőképességét meg lehet növelni. Eredményeinket a Nano Letters folyóiratban közöltük. | My results are briefly listed and enumerated in different fields: i) Identification of point defects in semiconductors: Numerous point defects were identified in silicon carbide and aluminum nitride in cooperation with experimental group. ii)Spintronics, quantum optics: Nitrogen-vacancy center in diamond is one of the most prominent quantum bit in solid. The mechanism of excitation, the distribution of spin density, and numerous other properties of this defect were understood by my calculations. The signal of electro-luminescence of neutral nitrogen-vacancy could be understood by the help of my calculations that we wish to publish in Nature Photonics (under referee review). Besides, my results were published in Physical Review Letter, Physical Review B Rapid Communication, and invited feature articles. iii)Photo-voltaics: Our results aout the possible increase in efficiency of solar cells were published in Nano Letters. The results were highlighted in the Bulletin of Materials Research Society in US. iv)Biomarker: We studied mostly SiC nanoparticles in the field of biomarkers. Our results could explain various recent experimental data. We published our results in Applied Physics Letters és a The Journal of Chemical Physics. v)Nanoelectronics: We proposed such a set-up for Si nanowire based nanoelectonics device where it may lead to a breakthrough in increasing the electrical conduction in ultrasmall nanowires. Our results were published in Nano Letters

    Besugárzással létrehozott ponthiba és ponthibaagglomerátumok, valamint ezek optikai tulajdonságokra gyakorolt hatásának elméleti vizsgálata szilíciumkarbidban = Theoretical investigation of point defects, their agglomerates and their effects on optical properties in irradiated silicon carbide by means of quantum mechanical calculations

    Get PDF
    Kutatásaimban három fontos atomi folyamatra mutattam rá a besugárzott SiC-ban: az antisite-ok, a vakanciák, valamint a szén-intersticiálisok aggregációja. A számításaim részben egy időben mutatták ki a kísérletekkel együtt ezeket, vagy előre megjósolták. Megmutattam, hogy ezen hibák általában elektromosan aktívak, és korábban már részben észlelték azokat. A divakancia azonosítása PRL-ben jelent meg, illetve szén antisite-vakancia pár azonosítása is ugyanolyan fontos eredmény mind elméleti mind gyakorlati szempontból. A p-típusú adalékok és szén-intersticiálisok komplexumai szintén létrehozhatnak termikusan stabil, parazita hibákat számításaink szerint a besugárzott SiC-ban, amelyet később a kísérletek is megerősítettek. A fentiek mellett a foszfor donor CVD-beli növesztésének megértéséhez, valamint az azonosításához járultam lényegesen hozzá. Tisztáztuk, hogy melyek a SiC/SiO2 határfelületen előforduló legfontosabb hibák, és azok hogyan befolyásolják a SiC elektronszerkezetét. Emellett megvizsgáltuk egy hipotetikus szuperrács elektromos és optikai tulajdonságait, amely ú.n. polaritásváltásos hibákat tartalmaz. Megmutattuk, hogy nm alatti ultravékony 2D elektron- és lyukgázt lehet így létrehozni. Emellett ez egy polarizációs szuperrácsot alkot, ahol az effektív tiltottsáv-szélességet lehet szabályozni. Emiatt különleges nem-lineáris optikai tulajdonságokkal is rendelkezik. Számításaink szerint atomi rétegleválasztás módszerével a fenti szuperrács megvalósítható. | In my studies I pointed out three basic processes at atomistic level in irradiated SiC: aggregation of antisites, vacancies and carbon self-interstitials. This was shown partly simultanuously with the experiments, or those have been predicted by my calculations. I found that these defects are usually electrically active, and some of them have been already detected. The identification of divacancy was published in PRL, while the identification of carbon antisite-vacancy pair is also very important result from both theoretical and technological point of view. Our calculations indicated that the complex of p-type dopants and carbon interstitials can also form thermally stable, parasite defects in irradiated SiC, that has been confirmed later in the experiments. Beside that our calculation significantly contributed to the understanding of doping of phosphorous in CVD chamber as well as in its identifiation. We found the most important defects at the interface of SiC/SiO2 and how those affected the electronic structure of SiC. In addition, we have investigated the electrical and optical properties of an hypothetical superlattice that contains so-called polarity-change defects. We showed that 2D electron and hole gases are formed under nm thickness. This forms also a polarization superlattice, in that the effective band gap can be controlled. It possesses peculiar non-linear optical properties. Our calculations showed that this superlattice can be grown by atomic layer epitaxy

    Investigation of oxygen-vacancy complexes in diamond by means of \textit{ab initio} calculations

    Full text link
    Point defects in diamond may act as quantum bits. Recently, oxygen-vacancy related defects have been proposed to the origin of the so-called ST1 color center in diamond that can realize a long-living solid-state quantum memory. Motivated by this proposal we systematically investigate oxygen-vacancy complexes in diamond by means of first principles density functional theory calculations. We find that all the considered oxygen-vacancy defects have a high-spin ground state in their neutral charge state, which disregards them as an origin for the ST1 color center. We identify a high-spin metastable oxygen-vacancy complex and characterize their magnetooptical properties for identification in future experiments.Comment: 9 pages, 6 figures, 2 table

    Magneto-optical spectra of the split nickel-vacancy defect in diamond

    Get PDF
    Nickel is a common impurity in high-pressure high-temperature diamond and may contaminate chemical vapor deposited diamond used for high-power electronics or quantum technology applications. Magneto-optical fingerprints of nickel have been known since decades, however, no consensus has been reached about the microscopic origins of nickel-related electron paramagnetic resonance, photoluminescence, and optically de- tected magnetic resonance spectra. The unknown nickel-related defect structures in diamond make it difficult to control them or harness them for a given application. As a consequence, nickel is considered as an impurity in diamond that should be avoided or its concentration should be minimized. Recent advances in the development of ab initio magneto-optical spectroscopy have significantly increased its accuracy and predictive power that can be employed for identification and in-depth characterization of paramagnetic color centers in diamond. In this study, we extend the accuracy of the ab initio magneto-optical spectroscopy tools towards self-consistent calculation of second-order spin-orbit coupling for paramagnetic color centers in solids. We apply the full arsenal of the ab initio magneto-optical spectroscopy tools to characterize the split nickel-vacancy defect in diamond which is one of the most stable nickel-related defect configurations. As a result, electron paramagnetic resonance and optical centers are positively identified in various charge states of the nickel-vacancy defect in diamond. In particular, the 1.40-eV optical center and the NIRIM-2 electron paramagnetic resonance center are identified as the single negative charge state of the split nickel-vacancy center. The defect possesses S = 1 2 spin state with an orbital doublet ground state. We find that the coherence time of the ground-state spin is about 0.1 ms at cryogenic temperatures which can be optically initialized and readout by a �-scheme protocol. Since the defect has inversion symmetry the optical signal is insensitive to the stray electric fields, which is an advantage for creating indistinguishable solid-state single-photon sources. We predict that the negatively charged nickel-vacancy defect has similar optical properties to those of the well-known silicon-vacancy defect in diamond but is superior in terms of electron spin coherence times. Our study resolves a few decades controversy about the nickel-related spectroscopy centers in diamond and turns nickel from an impurity to a resource in quantum technology applications

    Harnessing no-photon exciton generation chemistry to engineer semiconductor nanostructures

    Get PDF
    Production of semiconductor nanostructures with high yield and tight control of shape and size distribution is an immediate quest in diverse areas of science and technology. Electroless wet chemical etching or stain etching can produce semiconductor nanoparticles with high yield but is limited to a few materials because of the lack of understanding the physical-chemical processes behind. Here we report a no-photon exciton generation chemistry (NPEGEC) process, playing a key role in stain etching of semiconductors. We demonstrate NPEGEC on silicon carbide polymorphs as model materials. Specifically, size control of cubic silicon carbide nanoparticles of diameter below ten nanometers was achieved by engineering hexagonal inclusions in microcrystalline cubic silicon carbide. Our finding provides a recipe to engineer patterned semiconductor nanostructures for a broad class of materials

    Investigation of oxygen-vacancy complexes in diamond by means of ab initio calculations

    Get PDF
    Point defects in diamond may act as quantum bits. Recently, oxygen-vacancy related defects have been proposed to the origin of the so-called ST1 color center in diamond that can realize a long-living solid-state quantum memory. Motivated by this proposal we systematically investigate oxygen-vacancy complexes in diamond by means of first principles density functional theory calculations. We find that all the considered oxygen-vacancy defects have a high-spin ground state in their neutral charge state, which disregards them as an origin for the ST1 color center. We identify a high-spin metastable oxygen-vacancy complex and characterize their magneto-optical properties for identification in future experiments

    Immunomodulatory Potential of Differently-Terminated Ultra-Small Silicon Carbide Nanoparticles

    Get PDF
    Ultra-small nanoparticles with sizes comparable to those of pores in the cellular membrane possess significant potential for application in the field of biomedicine. Silicon carbide ultra-small nanoparticles with varying surface termination were tested for the biological system represented by different human cells (using a human osteoblastic cell line as the reference system and a monocyte/macrophage cell line as immune cells). The three tested nanoparticle surface terminations resulted in the observation of different effects on cell metabolic activity. These effects were mostly noticeable in cases of monocytic cells, where each type of particle caused a completely different response (‘as-prepared’ particles, i.e., were highly cytotoxic, –OH terminated particles slightly increased the metabolic activity, while –NH2 terminated particles caused an almost doubled metabolic activity) after 24 h of incubation. Subsequently, the release of cytokines from such treated monocytes and their differentiation into activated cells was determined. The results revealed the potential modulation of immune cell behavior following stimulation with particular ultra-small nanoparticles, thus opening up new fields for novel silicon carbide nanoparticle biomedical applications

    Ultraviolet Quantum Emitters in Hexagonal Boron Nitride from Carbon Clusters

    Get PDF
    Ultraviolet (UV) quantum emitters in hexagonal boron nitride (hBN) have generated considerable interest due to their outstanding optical response. Recent experiments have identified a carbon impurity as a possible source of UV single-photon emission. Here, on the basis of first-principles calculations, we systematically evaluate the ability of substitutional carbon defects to develop the UV color centers in hBN. Of 17 defect configurations under consideration, we particularly emphasize the carbon ring defect (6C), for which the calculated zero-phonon line agrees well the experimental 4.1 eV emission signal. We also compare the optical properties of 6C with those of other relevant defects, thereby outlining the key differences in the emission mechanism. Our findings provide new insights into the strong response of this color center to external perturbations and pave the way to a robust identification of the particular carbon substitutional defects by spectroscopic methods

    Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride

    Get PDF
    Highly correlated orbitals coupled with phonons in two-dimension are identified for paramagnetic and optically active boron vacancy in hexagonal boron nitride by first principles methods which are responsible for recently observed optically detected magnetic resonance signal. Here, we report ab initio analysis of the correlated electronic structure of this center by density matrix renormalization group and Kohn-Sham density functional theory methods. By establishing the nature of the bright and dark states as well as the position of the energy levels, we provide a complete description of the magneto-optical properties and corresponding radiative and non-radiative routes which are responsible for the optical spin polarization and spin dependent luminescence of the defect. Our findings pave the way toward advancing the identification and characterization of room temperature quantum bits in two-dimensional solids
    corecore