764 research outputs found

    Spin tunneling in magnetic molecules: Quantitative estimates for Fe8 clusters

    Full text link
    Spin tunneling in the particular case of the magnetic molecular cluster octanuclear iron(III), Fe8, is treated by an effective Hamiltonian that allows for an angle-based description of the process. The presence of an external magnetic field along the easy axis is also taken into account in this description. Analytic expressions for the energy levels and barriers are obtained from a harmonic approximation of the potential function which give results in good agreement with the experimental results. The energy splittings due to spin tunneling is treated in an adapted WKB approach and it is shown that the present description can give results to a reliable degree of accuracy.Comment: 17 pages, 2 figures, preprint submitted to Physica

    On the q-deformation of the NJL model

    Get PDF
    Using a q-deformed fermionic algebra we perform explicitly a deformation of the Nambu-Jona-Lasinio (NJL) Hamiltonian. In the Bogoliubov-Valatin approach we obtain the deformed version of the functional for the total energy, which is minimized to obtain the corresponding gap equation. The breaking of chiral symmetry and its restoration in the limit q→0q \to 0 are then discussed.Comment: 5 eps figure

    The Wigner function associated to the Rogers-Szego polynomials

    Full text link
    We show here that besides the well known Hermite polynomials, the q-deformed harmonic oscillator algebra admits another function space associated to a particular family of q-polynomials, namely the Rogers-Szego polynomials. Their main properties are presented, the associated Wigner function is calculated and its properties are discussed. It is shown that the angle probability density obtained from the Wigner function is a well-behaved function defined in the interval [-Pi,Pi), while the action probability only assumes integer values greater or equal than zero. It is emphasized the fact that the width of the angle probability density is governed by the free parameter q characterizing the polynomial.Comment: 12 pages, 2 (mathemathica) figure

    Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research

    Get PDF
    Trophic rewilding is an ecological restoration strategy that uses species introductions to restore top-down trophic interactions and associated trophic cascades to promote self-regulating biodiverse ecosystems. Given the importance of large animals in trophic cascades and their widespread losses and resulting trophic downgrading, it often focuses on restoring functional megafaunas. Trophic rewilding is increasingly being implemented for conservation, but remains controversial. Here, we provide a synthesis of its current scientific basis, highlighting trophic cascades as the key conceptual framework, discussing the main lessons learned from ongoing rewilding projects, systematically reviewing the current literature, and highlighting unintentional rewilding and spontaneous wildlife comebacks as underused sources of information. Together, these lines of evidence show that trophic cascades may be restored via species reintroductions and ecological replacements. It is clear, however, that megafauna effects may be affected by poorly understood trophic complexity effects and interactions with landscape settings, human activities, and other factors. Unfortunately, empirical research on trophic rewilding is still rare, fragmented, and geographically biased, with the literature dominated by essays and opinion pieces. We highlight the need for applied programs to include hypothesis testing and science-based monitoring, and outline priorities for future research, notably assessing the role of trophic complexity, interplay with landscape settings, land use, and climate change, as well as developing the global scope for rewilding and tools to optimize benefits and reduce human–wildlife conflicts. Finally, we recommend developing a decision framework for species selection, building on functional and phylogenetic information and with attention to the potential contribution from synthetic biology

    New insights into North Sea deep crustal structure and extension from transdimensional ambient noise tomography

    Get PDF
    SUMMARY The deep crustal structure beneath the North Sea is poorly understood since it is constrained by only a few seismic reflection and refraction profiles. However, it is widely acknowledged that the mid to lower crust plays important roles in rift initiation and evolution, particularly when large-scale sutures and/or terrane boundaries are present, since these inherited features can focus strain or act as inhibitors to extensional deformation. Ancient tectonic features are known to exist beneath the iconic failed rift system of the North Sea, making it an ideal location to investigate the complex interplay between pre-existing regional heterogeneity and rifting. To this end, we produce a 3-D shear wave velocity model from transdimensional ambient seismic noise tomography to constrain crustal properties to ∌30 km depth beneath the North Sea and its surrounding landmasses. Major North Sea sedimentary basins appear as low shear wave velocity zones that are a good match to published sediment thickness maps. We constrain relatively thin crust (13–18 km) beneath the Central Graben depocentres that contrasts with crust elsewhere at least 25–30 km thick. Significant variations in crustal structure and rift symmetry are identified along the failed rift system that appears to be related to the locations of Laurentia–Avalonia–Baltica palaeoplate boundaries. We constrain first-order differences in structure between palaeoplates; with strong lateral gradients in crustal velocity related to Laurentia–Avalonia–Baltica plate juxtaposition and reduced lower crustal velocities in the vicinity of the Thor suture, possibly representing the remnants of a Caledonian accretionary complex. Our results provide fresh insight into the pivotal roles that ancient terranes can play in the formation and failure of continental rifts and may help explain the characteristics of other similar continental rifts globally.</jats:p

    Genetic pattern and demographic history of Salminus brasiliensis: population expansion in the Pantanal Region during the Pleistocene

    Get PDF
    Pleistocene climate changes were major historical events that impacted South American biodiversity. Although the effects of such changes are well-documented for several biomes, it is poorly known how these climate shifts affected the biodiversity of the Pantanal floodplain. Fish are one of the most diverse groups in the Pantanal floodplains and can be taken as a suitable biological model for reconstructing paleoenvironmental scenarios. To identify the effects of Pleistocene climate changes on Pantanal?s ichthyofauna, we used genetic data from multiple populations of a top-predator longdistance migratory fish, Salminus brasiliensis. We specifically investigated whether Pleistocene climate changes affected the demography of this species. If this was the case, we expected to find changes in population size over time. Thus, we assessed the genetic diversity of S. brasiliensis to trace the demographic history of nine populations from the Upper Paraguay basin, which includes the Pantanal floodplain, that form a single genetic group, employing approximate Bayesian computation (ABC) to test five scenarios: constant population, old expansion, old decline, old bottleneck following by recent expansion, and old expansion following by recent decline. Based on two mitochondrial DNA markers, our inferences from ABC analysis, the results of Bayesian skyline plot, the implications of star-like networks, and the patterns of genetic diversity (high haplotype diversity and low-to-moderate nucleotide diversity) indicated a sudden population expansion. ABC allowed us to make strong quantitative inferences about the demographic history of S. brasiliensis. We estimated a small ancestral population size that underwent a drastic fivefold expansion, probably associated with the colonization of newly formed habitats. The estimated time of this expansion was consistent with a humid and warm phase as inferred by speleothem growth phases and travertine records during Pleistocene interglacial periods. The strong concordance between our genetic inferences and this historical data could represent the first genetic record of a humid and warm phase in the Pantanal in the period since the Last Interglacial to 40 ka
    • 

    corecore