37 research outputs found

    Properties of hypermassive neutron stars formed in mergers of spinning binaries

    Full text link
    We present numerical simulations of binary neutron star mergers, comparing irrotational binaries to binaries of NSs rotating aligned to the orbital angular momentum. For the first time, we study spinning BNSs employing nuclear physics equations of state, namely the ones of Lattimer and Swesty as well as Shen, Horowitz, and Teige. We study mainly equal mass systems leading to a hypermassive neutron star (HMNS), and analyze in detail its structure and dynamics. In order to exclude gauge artifacts, we introduce a novel coordinate system used for post-processing. The results for our equal mass models show that the strong radial oscillations of the HMNS modulate the instantaneous frequency of the gravitational wave (GW) signal to an extend that leads to separate peaks in the corresponding Fourier spectrum. In particular, the high frequency peaks which are often attributed to combination frequencies can also be caused by the modulation of the m=2 mode frequency in the merger phase. As a consequence for GW data analysis, the offset of the high frequency peak does not necessarily carry information about the radial oscillation frequency. Further, the low frequency peak in our simulations is dominated by the contribution of the plunge and the first 1-2 bounces. The amplitude of the radial oscillations depends on the initial NS spin, which therefore has a complicated influence on the spectrum. Another important result is that HMNSs can consist of a slowly rotating core with an extended, massive envelope rotating close to Keplerian velocity, contrary to the common notion that a rapidly rotating core is necessary to prevent a prompt collapse. Finally, our estimates on the amount of unbound matter show a dependency on the initial NS spin, explained by the influence of the latter on the amplitude of radial oscillations, which in turn cause shock waves.Comment: 17 pages, 20 figures Updated to version published in PR

    High-Order Numerical-Relativity Simulations of Binary Neutron Stars

    Get PDF
    We report simulations of the inspiral and merger of binary neutron stars performed with \texttt{WhiskyTHC}, the first of a new generation of numerical relativity codes employing higher than second-order methods for both the spacetime and the hydrodynamic evolution. We find that the use of higher-order schemes improves substantially the quality of the gravitational waveforms extracted from the simulations when compared to those computed using traditional second-order schemes. The reduced de-phasing and the faster convergence rate allow us to estimate the phase evolution of the gravitational waves emitted, as well as the magnitude of finite-resolution effects, without the need of phase- or time-alignments or rescalings of the waves, as sometimes done in other works. Furthermore, by using an additional unpublished simulation at very high resolution, we confirm the robustness of our high convergence order of 3.23.2.Comment: Submitted for the ASTRONUM-2014 proceedings. Includes a previously unpublished high-resolution simulatio

    Differentially-rotating neutron star models with a parametrized rotation profile

    Full text link
    We analyze the impact of the choice rotation law on equilibrium sequences of relativistic differentially-rotating neutron stars in axisymmetry. The maximum allowed mass for each model is strongly affected by the distribution of angular velocity along the radial direction and by the consequent degree of differential rotation. In order to study the wide parameter space implied by the choice of rotation law, we introduce a functional form that generalizes the so called "j-const. law" adopted in all previous work. Using this new rotation law we reproduce the angular velocity profile of differentially-rotating remnants from the coalescence of binary neutron stars in various 3-dimensional dynamical simulations. We compute equilibrium sequences of differentially rotating stars with a polytropic equation of state starting from the spherically symmetric static case. By analyzing the sequences at constant ratio, T/|W|, of rotational kinetic energy to gravitational binding energy, we find that the parameters that best describe the binary neutron star remnants cannot produce equilibrium configurations with values of T/|W| that exceed 0.14, the criterion for the onset of the secular instability.Comment: Submitted to A&A, 6 pages, 3 figure

    High-Order Fully General-Relativistic Hydrodynamics: new Approaches and Tests

    Full text link
    We present a new approach for achieving high-order convergence in fully general-relativistic hydrodynamic simulations. The approach is implemented in WhiskyTHC, a new code that makes use of state-of-the-art numerical schemes and was key in achieving, for the first time, higher than second-order convergence in the calculation of the gravitational radiation from inspiraling binary neutron stars Radice et al. (2013). Here, we give a detailed description of the algorithms employed and present results obtained for a series of classical tests involving isolated neutron stars. In addition, using the gravitational-wave emission from the late inspiral and merger of binary neutron stars, we make a detailed comparison between the results obtained with the new code and those obtained when using standard second-order schemes commonly employed for matter simulations in numerical relativity. We find that even at moderate resolutions and for binaries with large compactness, the phase accuracy is improved by a factor 50 or more.Comment: 34 pages, 16 figures. Version accepted on CQ

    On the black hole from merging binary neutron stars: how fast can it spin?

    Get PDF
    The merger of two neutron stars will in general lead to the formation of a torus surrounding a black hole whose rotational energy can be tapped to potentially power a short gamma-ray burst. We have studied the merger of equal-mass binaries with spins aligned with the orbital angular momentum to determine the maximum spin the black hole can reach. Our initial data consists of irrotational binaries to which we add various amounts of rotation to increase the total angular momentum. Although the initial data violates the constraint equations, the use of the constraint-damping CCZ4 formulation yields evolutions with violations smaller than those with irrotational initial data and standard formulations. Interestingly, we find that a limit of J/M2≃0.89J/M^2 \simeq 0.89 exists for the dimensionless spin and that any additional angular momentum given to the binary ends up in the torus rather than in the black hole, thus providing another nontrivial example supporting the cosmic censorship hypothesis.Comment: 4 pages, 2 figures Version to appear in PRD Rapid Communication

    Beyond second-order convergence in simulations of binary neutron stars in full general relativity

    Get PDF
    Despite the recent rapid progress in numerical relativity, a convergence order less than the second has so far plagued codes solving the Einstein–Euler system of equations. We report simulations of the inspiral of binary neutron stars in quasi-circular orbits computed with a new code employing high-order, high-resolution shock-capturing, finite-differencing schemes that, for the first time, go beyond the second-order barrier. In particular, without any tuning or alignment, we measure a convergence order above three both in the phase and in the amplitude of the gravitational waves. Because the new code is already able to calculate waveforms with very small phase errors at modest resolutions, we are able to obtain accurate estimates of tidal effects in the inspiral that are essentially free from the large numerical viscosity typical of lower order methods, and even for the challenging large compactness and small-deformability binary considered here. We find a remarkable agreement between our Richardson-extrapolated waveform and the one from the tidally corrected post-Newtonian (PN) Taylor-T4 model, with a de-phasing smaller than 0.4 rad during the seven orbits of the inspiral and up to the contact point. Because our results can be used reliably to assess the validity of the PN or other approximations at frequencies significantly larger than those considered so far in the literature, at these compactnesses, they seem to exclude significant tidal amplifications from next to next-to-leading-order terms in the PN expansion
    corecore