23 research outputs found

    Low Density Lipoproteins as Circulating Fast Temperature Sensors

    Get PDF
    Background: The potential physiological significance of the nanophase transition of neutral lipids in the core of low density lipoprotein (LDL) particles is dependent on whether the rate is fast enough to integrate small (62uC) temperature changes in the blood circulation. Methodology/Principal Findings: Using sub-second, time-resolved small-angle X-ray scattering technology with synchrotron radiation, we have monitored the dynamics of structural changes within LDL, which were triggered by temperature-jumps and-drops, respectively. Our findings reveal that the melting transition is complete within less than 10 milliseconds. The freezing transition proceeds slowly with a half-time of approximately two seconds. Thus, the time period over which LDL particles reside in cooler regions of the body readily facilitates structural reorientation of the apolar core lipids. Conclusions/Significance: Low density lipoproteins, the biological nanoparticles responsible for the transport of cholesterol in blood, are shown to act as intrinsic nano-thermometers, which can follow the periodic temperature changes during blood circulation. Our results demonstrate that the lipid core in LDL changes from a liquid crystalline to an oily state within fractions of seconds. This may, through the coupling to the protein structure of LDL, have important repercussions o

    A novel mutation (Cys308Phe) of the LDL receptor gene in families from the South-Eastern part of Poland

    Get PDF
    The purpose of this investigation was to characterize a new mutation in the LDL-receptor (LDLR) gene in three families with clinically diagnosed familial hypercholesterolemia (FH) from the South-Eastern part of Poland. Mutational screening with exon by exon sequencing analysis was performed in all probands. The novel mutation c986G>T (Cys308Phe) in the exon 7 of LDLR gene was found in three apparently unrelated probands with FH. Analysis of the receptor activity of peripheral blood lymphocytes by binding and uptake of DiL-LDL showed a significant reduction (by 24% versus healthy control) of the fluorescent label in the lymphocytes of patients heterozygous for this mutation. Concentrations of serum LDL-C in probands before treatment were between 9.5 and 10.5 mmol/l. All patients had corneal arcus and tendon xanthoma. Clinically, families were characterized by premature coronary artery disease. This mutation occurred relatively frequently in our group of patients with FH, but this could be explained by a founder effect since we demonstrated their common ancestors

    Preparation and Characterization of a Lovastatin-Loaded Protein-Free Nanostructured Lipid Carrier Resembling High-Density Lipoprotein and Evaluation of its Targeting to Foam Cells

    Get PDF
    This study was designed to investigate whether a non-protein nanostructured lipid carrier (NLC) resembling high-density lipoprotein (HDL) could deliver a hydrophobic anti-atherogenic drug, lovastatin, to foam cells. Lovastatin-loaded NLC (LT-NLC) was prepared by a nanoprecipitation/solvent diffusion method. The LT-NLC-apoprotein (LT-NLC-apo) was prepared by incubating LT-NLC with native HDL. The physicochemical parameters of LT-NLC were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and crystallization behavior. Targeting behavior and mechanism were demonstrated by the incubation of LT-NLC-apo with a RAW 264.7 macrophage-derived foam cell model in the presence or absence of very-low-density lipoprotein (VLDL) and lipase. The results showed that LT-NLC was solid spherical or oval in shape with an average diameter of 13.8 ± 2.2 nm, zeta potential of −29.3 ± 0.2 mV and entrapment efficiency of 96.2 ± 1.3%. Phagocytosis studies showed that uptake of LT-NLC-apo by macrophages was significantly lower than LT-NLC (p < 0.01), suggesting that LT-NLC-apo could possibly escape recognition from macrophages in vivo. The uptake was increased twofold when LT-NLC-apo was incubated with transfected foam cells containing VLDL and lipase. These results indicated that non-protein NLC resembling HDL could be a useful tool to deliver lipophilic anti-atherogenic drugs to foam cells, and that uptake could be enhanced by the VLDL receptor pathway

    Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects

    Get PDF
    The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability

    The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review

    Get PDF
    BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model. The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution

    Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise

    Full text link

    Effect of Mediterranean Diet With and Without Weight Loss on Apolipoprotein B 100

    No full text
    corecore