3,160 research outputs found

    High momentum lepton pairs from jet-plasma interactions

    Get PDF
    We discuss the emission of high momentum lepton pairs (p_T>4 GeV) with low invariant masses (M << p_T) in central Au+Au collisions at RHIC (\sqrt{s_{NN}}=200 GeV). The spectra of dileptons produced through interactions of quark and antiquark jets with the quark-gluon plasma (QGP) have been calculated. Annihilation and Compton scattering processes, as well as processes benefitting from collinear enhancement, including Landau-Pomeranchuk-Migdal (LPM) effects, are calculated and convolved with a one dimensional hydrodynamic expansion. The jet-induced contributions are compared to thermal dilepton emission and Drell-Yan processes, and are found to dominate around p_T=4 GeV.Comment: Parallel talk given at QM2006, Shanghai November 2006. 4 pages, 3 figure

    Dilepton Production in Nucleon-Nucleon Reactions With and Without Hadronic Inelasticities

    Full text link
    We calculate elementary proton-proton and neutron-proton bremsstrahlung and their contribution to the e+e−e^+e^- invariant mass distribution. At 4.9 GeV, the proton-proton contribution is larger than neutron-proton, but it is small compared to recent data. We then make a first calculation of bremsstrahlung in nucleon-nucleon reactions with multi-hadron final states. Again at 4.9 GeV, the many-body bremsstrahlung is larger than simple nucleon-nucleon bremsstrahlung by more than an order of magnitude in the low-mass region. When the bremsstrahlung contributions are summed with Dalitz decay of the η\eta, radiative decay of the Δ\Delta and from two-pion annihilation, the result matches recent high statistics proton-proton data from the Dilepton Spectrometer collaboration.Comment: 1+17 pages plus 11 PostScript figures uuencoded and appended, McGill/93-9, TPI-MINN-93/18-

    Properties of the phi meson at high temperatures and densities

    Full text link
    We calculate the spectral density of the phi meson in a hot bath of nucleons and pions using a general formalism relating self-energy to the forward scattering amplitude (FSA). In order to describe the low energy FSA, we use experimental data along with a background term. For the high energy FSA, a Regge parameterization is employed. We verify the resulting FSA using dispersion techniques. We find that the position of the peak of the spectral density is slightly shifted from its vacuum position and that its width is considerably increased. The width of the spectral density at a temperature of 150 MeV and at normal nuclear density is more than 90 MeV.Comment: 4 pages, 5 figures, Poster presented at Quark Matter 200

    Rate of photon production from hot hadronic matter

    Full text link
    Thermal photon emission rates from hot hadronic matter are studied to order e2g4e^{2}g^{4}, where gg indicates a strong-interaction coupling constant. Radiative decay of mesons, Compton and annihilation processes for hadrons, and bremsstrahlung reactions are all considered. Compared to the standard rates from the literature, one finds two orders of magnitude increase for low photon energies stemming mainly from bremsstrahlung and then a modest increase (factor of 2) for intermediate and high energy photons owing to radiative decays for a variety of mesons and from other reactions involving strangeness. These results could have important consequences for electromagnetic radiation studies at RHIC.Comment: 5 pages LaTeX, 4 Postscript figure

    Risk assessment for recrudescence of avian influenza in caged layer houses following depopulation : the effect of cleansing, disinfection and dismantling of equipment

    Get PDF
    Following an outbreak of highly pathogenic avian influenza virus (HPAIV) in a poultry house, control measures are put in place to prevent further spread. An essential part of the control measures based on the European Commission Avian Influenza Directive 2005/94/EC is the cleansing and disinfection (C&D) of infected premises. Cleansing and disinfection includes both preliminary and secondary C&D, and the dismantling of complex equipment during secondary C&D is also required, which is costly to the owner and also delays the secondary cleansing process, hence increasing the risk for onward spread. In this study, a quantitative risk assessment is presented to assess the risk of re-infection (recrudescence) occurring in an enriched colony-caged layer poultry house on restocking with chickens after different C&D scenarios. The risk is expressed as the number of restocked poultry houses expected before recrudescence occurs. Three C&D scenarios were considered, namely (i) preliminary C&D alone, (ii) preliminary C&D plus secondary C&D without dismantling and (iii) preliminary C&D plus secondary C&D with dismantling. The source-pathway-receptor framework was used to construct the model, and parameterisation was based on the three C&D scenarios. Two key operational variables in the model are (i) the time between depopulation of infected birds and restocking with new birds (TbDR) and (ii) the proportion of infected material that bypasses C&D, enabling virus to survive the process. Probability distributions were used to describe these two parameters for which there was recognised variability between premises in TbDR or uncertainty due to lack of information in the fraction of bypass. The risk assessment estimates that the median (95% credible intervals) number of repopulated poultry houses before recrudescence are 1.2 × 104 (50 to 2.8 × 106), 1.9 × 105 (780 to 5.7 × 107) and 1.1 × 106 (4.2 × 103 to 2.9 × 108) under C&D scenarios (i), (ii) and (iii), respectively. Thus for HPAIV in caged layers, undertaking secondary C&D without dismantling reduces the risk by 16-fold compared to preliminary C&D alone. Dismantling has an additional, although smaller, impact, reducing the risk by a further 6-fold and thus around 90-fold compared to preliminary C&D alone. On the basis of the 95% credible intervals, the model demonstrates the importance of secondary C&D (with or without dismantling) over preliminary C&D alone. However, the extra protection afforded by dismantling may not be cost beneficial in the context of reduced risk of onward spread

    Typical properties of optimal growth in the Von Neumann expanding model for large random economies

    Full text link
    We calculate the optimal solutions of the fully heterogeneous Von Neumann expansion problem with NN processes and PP goods in the limit N→∞N\to\infty. This model provides an elementary description of the growth of a production economy in the long run. The system turns from a contracting to an expanding phase as NN increases beyond PP. The solution is characterized by a universal behavior, independent of the parameters of the disorder statistics. Associating technological innovation to an increase of NN, we find that while such an increase has a large positive impact on long term growth when Nâ‰ȘPN\ll P, its effect on technologically advanced economies (N≫PN\gg P) is very weak.Comment: 8 pages, 1 figur

    Applications of omics approaches to the development of microbiological risk assessment using RNA virus dose–response models as a case study

    Get PDF
    The last decade has seen a huge increase in the amount of “omics” data available and in our ability to interpret those data. The aim of this paper is to consider how omics techniques can be used to improve and refine microbiological risk assessment, using dose response models for RNA viruses, with particular reference to norovirus through the oral route as the case study. The dose response model for initial infection in the gastrointestinal tract is broken down into the component steps at the molecular level and the feasibility of assigning probabilities to each step assessed. The molecular mechanisms are not sufficiently well understood at present to enable quantitative estimation of probabilities on the basis of omics data. At present, the great strength of gene sequence data appears to be in giving information on the distribution and proportion of susceptible genotypes (for example due to the presence of the appropriate pathogen-binding receptor) in the host population rather than in predicting specificities from the amino acid sequences concurrently obtained. The nature of the mutant spectrum in RNA viruses greatly complicates the application of omics approaches to development of mechanistic dose response models and prevents prediction of risks of disease progression (given infection has occurred) at the level of the individual host. However, molecular markers in the host and virus may enable more broad predictions to be made about the consequences of exposure in a population. In an alternative approach, comparing the results of deep sequencing of RNA viruses in the faeces/vomitus from donor humans with those from their infected recipients may enable direct estimates of the average probability of infection per virion to be made

    Von Neumann's expanding model on random graphs

    Full text link
    Within the framework of Von Neumann's expanding model, we study the maximum growth rate r achievable by an autocatalytic reaction network in which reactions involve a finite (fixed or fluctuating) number D of reagents. r is calculated numerically using a variant of the Minover algorithm, and analytically via the cavity method for disordered systems. As the ratio between the number of reactions and that of reagents increases the system passes from a contracting (r1). These results extend the scenario derived in the fully connected model (D\to\infinity), with the important difference that, generically, larger growth rates are achievable in the expanding phase for finite D and in more diluted networks. Moreover, the range of attainable values of r shrinks as the connectivity increases.Comment: 20 page
    • 

    corecore