1 Risk assessment for recrudescence of avian influenza in caged layer houses

2 following depopulation: The effect of cleansing, disinfection and dismantling of

3 equipment.

4

5 P. Gale<sup>1</sup>, S. Sechi<sup>2</sup>, V. Horigan<sup>1</sup>, R. Taylor<sup>1</sup>, I. Brown<sup>3</sup> and L. Kelly<sup>1,2</sup>

6

<sup>7</sup> <sup>1</sup>Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB,

8 UK.

- 9 <sup>2</sup>Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower,
- 10 26 Richmond Street, Glasgow G1 1XH.
- <sup>3</sup>OIE/FAO International Reference Laboratory for Avian Influenza, Newcastle Disease and
- 12 Swine Influenza, Animal and Plant Health Agency, Weybridge, New Haw, Addlestone,
- 13 Surrey, KT15 3NB, UK.

14

- 15 Corresponding Author: Paul Gale. E-mail: Paul.Gale@apha.gov.uk.
- 16 Short title: Cleansing and disinfection risk assessment

17

#### 19 Abstract

20 Following an outbreak of **highly pathogenic avian influenza virus (HPAIV)** in a poultry 21 house, control measures are put in place to prevent further spread. An essential part of the 22 control measures based on the European Commission Avian Influenza Directive 23 2005/94/EC is the cleansing and disinfection (C&D) of infected premises. C&D includes 24 both preliminary and secondary C&D and the dismantling of complex equipment during 25 secondary C&D is also required, which is both costly to the owner and also delays the 26 secondary cleansing process hence increasing the risk for onward spread. In this study a quantitative risk assessment is presented to assess the risk of re-infection (recrudescence) 27 28 occurring in an enriched colony caged layer poultry house on restocking with chickens 29 after different C&D scenarios. The risk is expressed as the number of restocked poultry 30 houses expected before recrudescence occurs. Three C&D scenarios were considered 31 namely (i) preliminary C&D alone, (ii) preliminary C&D plus secondary C&D without dismantling and (iii) preliminary C&D plus secondary C&D with dismantling. The source-32 33 pathway-receptor framework was used to construct the model and parameterisation was 34 based on the three C&D scenarios. Two key operational variables in the model are (i) the 35 time between depopulation of infected birds and restocking with new birds (TbDR) 36 and (ii) the proportion of infected material that by-passes C&D, enabling virus to survive 37 the process. Probability distributions were used to describe these two parameters for 38 which there was recognised variability between premises in TbDR or uncertainty due to 39 lack of information in the fraction of by-pass. The risk assessment estimates that the 40 median (95% credible intervals) number of repopulated poultry houses before 41 recrudescence are 1.2 10<sup>4</sup> (50 to 2.8 10<sup>6</sup>), 1.9 10<sup>5</sup> (780 to 5.7 10<sup>7</sup>) and 1.1 10<sup>6</sup> (4.2 10<sup>3</sup> to 42 2.9 10<sup>8</sup>) under C&D scenarios (i), (ii) and (iii) respectively. Thus for HPAIV in caged layers undertaking secondary C&D without dismantling reduces the risk by 16-fold compared to 43 44 preliminary C&D alone. Dismantling has an additional, although smaller, impact, reducing

the risk by a further six-fold and thus around 90 fold compared to preliminary C&D alone.
On the basis of the 95% credible intervals, the model demonstrates the importance of
secondary C&D (with or without dismantling) over preliminary C&D alone. However, the
extra protection afforded by dismantling may not be cost beneficial in the context of
reduced risk of onward spread.

50 **Key words**: Notifiable avian disease; outbreak; control; policy; poultry house.

#### 51 Implications

52 Disease caused by highly pathogenic avian influenza virus (HPAIV) severely impacts on 53 the profitability of poultry farming. It is important to ensure that levels of residual HPAIV 54 infectivity in the poultry house are sufficiently reduced to ensure recrudescence does not occur. The outputs of the work presented here have important benefits through supporting 55 reductions in both labour costs to the farmer and in the time to complete secondary 56 57 cleansing and disinfection by not having to dismantle and rebuild complex equipment. The results of the risk assessment will help inform policy-makers and industry in their decision-58 59 making and the risk assessment model could be applied to other avian pathogens such as 60 Newcastle disease virus using appropriate data.

#### 62 Introduction

63 Avian influenza is an infectious viral disease in birds, including both domestic poultry and wild birds. Infections caused by avian influenza viruses in poultry cause two forms of the 64 65 disease that are distinguished by their pathogenicity. The low pathogenicity phenotype 66 generally only causes mild clinical signs, while the highly pathogenic avian influenza (HPAI) phenotype results in very high mortality rates in most poultry species. Disease 67 68 caused by highly pathogenic avian influenza virus (HPAIV) may have a severe impact 69 on the profitability of poultry farming and infected poultry flocks are typically culled (in 70 developed countries) with potential contacts to other poultry establishments being traced 71 so as to contain the spread of disease. Several HPAIV subtypes are currently circulating 72 and are considered endemic in parts of the world such as south-east Asia. During the 73 period January 2013 to August 2018 (OIE, 2018), 12 different HPAIV subtypes were 74 reported worldwide with Europe reporting the highest virus diversity (7 subtypes).

75 New virus strains with altered transmission and infection properties may emerge through 76 genetic reassortment and mutation. During the winters of 2016/17 and 2017/18 multiple 77 incursions of HPAIV into Europe including the United Kingdom (UK) (Hansen et al., 78 2018) occurred. The outbreak of HPAI H5N8 virus induced disease across Europe in the 79 winter of 2016/17 was particularly severe affecting both wild birds and poultry and was the 80 largest ever recorded in Europe in terms of number of poultry outbreaks, geographical 81 extent and number of dead wild birds (Alarcon et al., 2018). The HPAI H5N6 virus which 82 emerged in the Netherlands in late 2017 caused many events in wild birds in the UK and 83 Republic of Ireland in that winter (Roberts et al., 2018) but did not affect poultry in the UK 84 and resulted in only limited wild bird mortality in continental Europe with very few poultry 85 outbreaks. HPAI is a notifiable disease internationally and following an outbreak in poultry, 86 control measures are put in place to prevent further spread. Effective and rapid control of 87 HPAIV in poultry is important to prevent its spreading from an infected poultry house to

other poultry flocks through infection of wild birds or through fomite transmission. An 88 89 essential part of the control measures based on the European Commission Avian 90 Influenza Directive 2005/94/EC (EU, 2005) is the cleansing and disinfection (C&D) of 91 infected premises. Cleansing and disinfection includes preliminary and secondary C&D 92 and the dismantling of complex equipment during secondary C&D is also required. 93 Preliminary C&D is Government funded and involves spraying all parts of the premises 94 and any contaminated material remaining with disinfectant to 'damp down' any virus in the 95 environment. Secondary C&D is at the owner's expense and requires cleansing the 96 premises, including equipment and installations, to remove organic debris, degreasing and 97 disinfecting and then repeating the process.

In the absence of epidemiological evidence and data on how effective dismantling is in 98 99 preventing further outbreaks of HPAIV in a poultry house after C&D, a quantitative risk 100 assessment model is developed here to assess the probability that newly introduced 101 immunologically-naive chickens used to restock a poultry house become infected 102 (recrudescence) with HPAIV after C&D has taken place. Three C&D scenarios in a caged 103 layer house are assessed, namely preliminary alone, preliminary plus secondary without 104 dismantling and preliminary plus secondary with dismantling with data drawn primarily 105 from HPAIV H5N1 scenarios.

#### 106 Materials and methods

#### 107 Risk analysis and risk assessment

The terms risk analysis and risk assessment have different meanings. Risk analysis is the complete process for handling a threat. Risk assessment is a defined stage of the risk analysis process. Thus the risk analysis process is hazard identification followed by the risk assessment itself and finally risk management with risk communication important for all three stages (OIE, 2019). The risk assessment estimates the risks associated with the 113 hazard and may be gualitative or guantitative. It should be noted that hazard and risk are 114 different. The hazard is the pathogen, HPAIV in this case, while the risk is the probability of 115 an adverse event from the hazard occurring, namely recrudescence of HPAI in the 116 restocked poultry. Risk assessment is one of a number of tools to help manage and 117 prevent poultry diseases like HPAIV through predicting the risks of outbreaks and 118 assessing by how much various control processes reduce those risks. Other tools include 119 epidemiological case studies based on previous outbreaks to identify and rank those 120 factors which contribute to incursion, transmission and spread of such diseases. The 121 advantage of risk assessment is that it can used to predict the probability of outbreaks 122 occurring so that preventative actions may be implemented through risk management and 123 policy (Goddard et al., 2012), hopefully before an outbreak occurs.

124 The risk assessment here is based on quantifying the amount of infectivity that restocked 125 poultry (the receptor) are exposed to from infectious HPAIV remaining in the poultry house 126 (the source) through all the conceivable exposure pathways within the poultry house (the 127 pathway). Conceptually these risk assessments, known as "source-pathway-receptor" 128 models, are relatively simple mathematically although the pathways may be complex 129 depending on the system being studied. The structure of the risk assessment has to be 130 appropriate for the system and the hazard. Thus the source-pathway-receptor model is 131 well suited to environmental/process risk assessments involving a series of protective 132 barriers. Another risk assessment approach is the entry-exposure-consequence 133 assessment used for import risk assessment for exotic livestock diseases (OIE, 2019) and 134 is often qualitative as for example for importation of lumpy skin disease virus into the UK 135 through cattle hides (Gale et al., 2015). Qualitative assessment does not require 136 mathematical modelling skills to carry out and so is often the type of assessment used for 137 rapid, reactive, evidence-based decision making (Kelly et al., 2018).

138 The choice of qualitative or quantitative in risk assessment depends on the nature of the 139 available data and the complexity of the model and also the scope of the risk question as 140 set by the risk manager. Qualitative risk assessment can be applied in the absence of 141 sufficient numerical data but where there is at least some basic knowledge, expert opinion 142 or other understanding of the magnitude of the risks for each of the risk assessment steps. 143 The model here allows for by-pass of the C&D process and is too complex for qualitative risk assessment. Also being a multiple barriers model (i.e. including removal of manure at 144 145 the poultry house, destruction of virus by C&D and decay with time) it is not necessarily 146 suited to combining multiple low qualitative conditional probabilities using a risk matrix 147 approach (Kelly et al., 2018). Furthermore adding gualitative probabilities from several 148 parallel streams as required here is not straight forward. The risk assessment approach 149 here is therefore quantitative and complements a previous qualitative assessment 150 (Horigan et al., 2019).

151 Once the basic mathematical model as defined by the equations relating levels of HPAIV 152 in the poultry house at point of culling to the risk of infection in the restocked poultry have 153 been set out, there are several different approaches for quantitative risk assessment 154 including deterministic and probabilistic. The deterministic approach calculates the 155 arithmetic mean for each step in the source-pathway-receptor model and tends to deal 156 with uncertainty by using worst case assumptions particularly where data are lacking 157 (Gale, 2004 and 2005). The probabilistic approach produces a distribution of risks to 158 accommodate the uncertainty and/or variation and thus naturally provides 95% credible 159 intervals in addition to the median probability. This is important because it allows the risk 160 manager to be 97.5% confident that the risk is not higher.

161 *Model overview* 

162 The guantitative model is based on observations made during a site visit to a laying house 163 which housed 129 000 chickens in enriched colony cages. The model is based on three parts of the feed stream (namely the metal trough, the moving hopper and the moving 164 165 chain) and on three parts of the waste stream (namely the manure belt, the cross-166 conveyor, and the manure air drying equipment). In addition the floor is included. Colony 167 cages are not specifically considered, but are included as part of the manure belt which 168 runs directly underneath the cages. Moving parts were included because of their capacity 169 to generate dusts, although poultry are unlikely to have direct contact with moving chains, 170 for example.

171 The approach uses the "source-pathway-receptor" model developed previously for 172 assessing the infection risks from pathogens through environmental routes involving 173 treatment processes such as composting and sewage sludge processing followed by 174 pathogen decay in the environment (Gale, 2004 and 2005). The source term is the amount 175 of infectivity in the poultry house at the point of culling and removal of the infected birds. 176 The receptor in this model is the whole chicken flock used for restocking the poultry house 177 after the given C&D scenario. By assuming that the dose-response is linear such that just 178 a single HPAI virion is able initiate infection in a poultry host, albeit with low probability, it 179 does not matter whether one chicken in the restocked flock ingests the whole dose (and all 180 the other chickens are not exposed) or whether each and every chicken has an equal 181 portion of the dose. This approach is equivalent to calculating an arithmetic mean 182 individual bird exposure as has been used previously for environmental source-pathway-183 receptor risk assessments (Gale, 2004 and 2005) and avoids the need to estimate the 184 exact dose ingested by each and every one of the individual restocked birds. Furthermore 185 by assuming that a certain fraction of the residual infectivity is inhaled or ingested by the 186 incoming flock, the total number of restocked birds is not required in the exposure 187 calculation. The whole flock exposure is then used to calculate the **probability of at least** 

one chicken becoming infected in the poultry house (*poutbreak*), since it would only
need one bird to be infected for the entire restocked population to succumb. The
probability *poutbreak* is thus in effect the probability of recrudescence in that poultry house,
and its inverse represents the average number of similar poultry houses deploying the
C&D scenario before one had a recrudescence.

193 The source term: Virus loadings in the poultry house

The quantitative model is based on a large layer poultry house with 129 000 chickens (reflecting a site visit made in December 2016). It is assumed that 50% (i.e. 64 500) of the birds are infected and shedding HPAIV at the point of culling. The unit of infectivity in the exposure assessment is the **egg infectious dose 50% (EID**<sub>50</sub>) which is the dose required to infect 50% of inoculated embryonated fowls eggs (when given to each and every egg in the group) in laboratory assay. The viral titre contributions to the source term expressed as EID<sub>50</sub> units are estimated as described in Supplementary Material S1 for:-

- 201 1. The total HPAIV infectivity from the three bird matrices namely feathers,
- faeces and oropharyngeal secretions which goes into the "manure"
- 203 (EID<sub>50\_manure</sub>) calculated from data in Yamamoto et al. (2008) and Scottish
- 204 Government (2016) together with unpublished data from the Animal and Plant
- 205 Health Agency (APHA); and
- The airborne particulate HPAIV infectivity which settles as dust (*EID*<sub>50\_airborne</sub>)
   calculated from data of Spekreijse et al. (2011).

208 *Distribution of mass fractions of infected material to different feed and waste streams.* The 209 source term considers three waste and three feed streams within the poultry house,

210 together with the floor, as shown in Figure 1 for enriched colony caged layer houses. It is

- assumed that 99.9% of the manure produced is removed daily during normal operation of
- the poultry house and that this would have been removed in the 24 hours prior to culling.

213 Therefore 0.1% of the manure is still present in the poultry house after culling and removal 214 of the infected poultry. It is assumed that all of the airborne fraction settles as dust after 215 removal of the poultry. The fractions of manure (fstream manure) and the fractions of 216 **airborne particulate** (*f*<sub>stream\_airborne</sub>) assumed to be entering each of the three feed 217 streams and the three waste streams, together with the floor are set out in Table 1. These 218 are estimated on the basis of the site visit. The source term infectivity in a given stream 219 immediately after depopulation of the infected poultry (EID50 source stream) is given by:-220 Equation 1  $EID_{50 \ source \ stream} = EID_{50 \ manure} \times 0.001 \times f_{stream \ manure} +$ 

221  $EID_{50\_airborne} \times f_{stream\_airborne}$ 

222 The pathway term: Assessing the barriers and total exposures to re-stocked poultry

The pathway from residual infectivity in the poultry house at the point of depopulation of the infected flocks to the restocking with the new poultry flock is set out in Figure 2. The pathway is used to calculate the total exposure to the receptor in terms of EID<sub>50</sub> units and sets out the barriers which act to decrease the exposure to the receptor. These include natural decay in addition to destruction of virus by the C&D process.

228 *Modelling virus decay during the period between depopulation and restocking.* Viruses 229 cannot multiply outside the host and undergo natural decay once outside the host.

The **decimal reduction time** ( $D_t$ ) is the time for a 10-fold decrease (i.e. 1 log<sub>10</sub>) or 90% decrease in the virus loading.  $D_t$  times for HPAIV H7N1 A/ostrich/Italy/984/2000 and H5N1 A/turkey/Turkey/1/2005 in chicken faeces were 3.33 days and 12.05 days at 4°C and 0.83 days and 4.41 days at 20°C, respectively (C. Warren, personal communication). As is well known from other studies of virus inactivation, decay is more rapid at the higher temperature of 20°C compared to 4°C. The  $D_t$  time used for decay of HPAIV in this risk assessment is 10 days. Although the  $D_t$  for H5N1 at 4°C is >10 days at 12.05 days, the 237 value of 10 days takes into account that temperatures may exceed 4°C even during the 238 winter period (particularly in 2016). Furthermore the temperature in the shed with birds 239 present is higher, although the temperature will fall after depopulation. Using  $D_t$  times for 240 chicken faeces as in the models here is a worst case scenario because the  $D_t$  times 241 measured in poultry litter were much shorter at <5 min and <10 min for H7N1 and H5N1 242 respectively at both 4°C and 20°C (C. Warren, personal communication). For the purpose 243 of risk assessment, decay is assumed to occur over the time period between 244 depopulation of the infected poultry and restocking with the new birds (TbDR). 245 Minimum and maximum values of 40 and 90 days respectively were used to define a 246 uniform distribution for *TbDR* (see Supplementary Material S2).

247 *Modelling virus inactivation by cleansing and disinfection.* In this risk assessment, the 248 overall inactivation of HPAIV by C&D is modelled by summing the titres surviving in two 249 separate 'portions':-

250 1. The bulk phase, which undergoes efficient cleansing and disinfection; and

251 2. The by-pass phase, which misses efficient cleansing and disinfection altogether so252 that no pathogen inactivation takes place.

This is based on the method developed by Gale (2004) for removal of pathogens by composting of catering waste and simplifies the risk assessment methodology into estimating:-

The fraction of pathogen surviving in the properly cleansed and disinfectant treated bulk phase portion (y); and

The fraction of debris and organic material (and hence associated viruses) in
 those parts within each stream where C&D cannot reach and which therefore
 by-passes the bulk phase and effective C&D (*f<sub>bypass</sub>*).

261 The overall **fraction of input pathogen surviving C&D for each stream** (*f<sub>survive\_stream</sub>*) is 262 thus calculated as:-

263 Equation 2 
$$f_{survive\_stream} = (1 - f_{bypass}) \times \gamma + f_{bypass}$$

264 Values of  $\gamma$  are allocated in Table 1 for each of the six streams and the floor on the basis of 265 the measured decrease in total aerobic bacteria counts in the most closely related 266 equipment during C&D of an operational poultry house as reported by Lucyckx et al. 267 (2015). This is described in Supplementary Material S2. Minimum and maximum values of  $f_{bvpass}$  to represent the proportions of organic material (and hence associated viruses) 268 269 which by-pass C&D within each stream for preliminary and secondary C&D with and 270 without dismantling are set out in Table 2. These were used to define a uniform distribution 271 for  $f_{bvpass}$  and were based on what is thought to be operationally achievable as set out in 272 Supplementary Material S2.

273 Calculation of exposures to restocked poultry through inhalation of dust and ingestion. The 274 **fractions inhaled** (*f*<sub>inhale</sub>) of the remaining infective material (after conversion to dust 275 through moving parts in the equipment or other disturbance in the restocked poultry 276 house) by the restocked poultry are set out in Table 1 for each of the streams together with 277 the **fractions ingested** (*f*ingest) through feeding and pecking. In the absence of data, these 278 are based on expert opinion and assumptions as set out in Supplementary Material S2. 279 Exposures (in EID<sub>50</sub> units) to the restocked poultry through ingestion and inhalation were 280 calculated for each of the seven streams from *EID*<sub>50\_source\_stream</sub> (Equation 1) allowing for 281 decay of HPAIV according to  $D_t$  over the *TbDR* period in the fraction,  $f_{survive stream}$ , (from 282 Equation 2) of HPAIV surviving C&D in each stream. The equations are set out in 283 Supplementary Material S2. The total poultry exposure (*Exposure* EID<sub>50</sub>) was 284 calculated as the sums of the exposures through the ingestion and inhalation routes for 285 each of the seven streams using equations set out in Supplementary Material S2. This

286 represents the total exposure to the poultry in a given poultry house. The units are "EID<sub>50</sub> 287 in total poultry population per poultry house". Because the model assumes that a fixed 288 proportion of the remaining infectivity is ingested or inhaled (according to fingest and finhale in 289 Table 1) by the poultry flock as a whole, the risk assessment is not dependent on the 290 number of restocked poultry. This is realistic for poultry houses with large numbers of birds 291 where a steady state is likely to be reached over a few days, but would be less appropriate 292 for houses with only a few birds. This avoids a more complex calculation involving the 293 estimation of how much debris each of 129 000 chickens ingests each day and the 294 number of days over which this could occur.

295 Receptor term: Calculating the risk of infection of the poultry house

#### 296 The number of chicken ID<sub>50</sub>s ingested by the chicken flock as a whole within the

poultry shed (*N<sub>chicken\_ID50</sub>*) is calculated from the total poultry exposure (*Exposure\_EID<sub>50</sub>*)
using the poultry infectivity data for HPAIV H5N1 of Aldous et al. (2010) as described in
Supplementary Material S2. The probability of at least one infected chicken in the poultry
house, and hence the probability of an outbreak in the poultry house, *p<sub>outbreak</sub>*, is then given
by:-

# 302 Equation 3 $p_{outbreak} = 1 - (1 - p_{50})^{N_{Chicken_{ID50}}}$

303 where  $p_{50}$  is the risk of infection from a single chicken ID<sub>50</sub> when given to a chicken (i.e. 304 0.5). The inverse of *p<sub>outbreak</sub>*, is the number of infected poultry houses cleansed according 305 to the given C&D procedure before recrudescence in the restocked poultry is expected to 306 occur in one. The number of infected chickens in the poultry house could be calculated 307 from N<sub>Chicken ID50</sub> as done for livestock grazing on land to which composted catering waste 308 had been applied (Gale, 2004) and would be greater than one for high values of 309 *N<sub>Chicken ID50</sub>*. However, the number of infected chickens in the poultry house is of little 310 interest here as we are not modelling severity of consequence or the probability of

311 detection of the infected flock (which would increase with higher numbers of infected 312 birds). If a chicken ingests more than one  $ID_{50}$  (due to spatial heterogeneity) it is 313 preventing other chickens in that house from being infected. With high values of 314  $N_{Chicken\_ID50}$ , then  $p_{outbreak}$  (i.e. the probability of one or more infected chickens) in Equation 315 3 tends to 1 and with just one chicken infected, recrudescence has occurred.

#### 316 *Running the model*

317 The model was run in R Studio with 1 000 iterations using the equations and parameters 318 as set out in this paper and in the Supplementary Material S1 and S2. This number of 319 iterations gave convergence of the probability distributions and outputs. The R code is set 320 out in Supplementary Material S3. For each of the 1 000 iterations a single value is used 321 for each of the input parameters in the equations of the model giving a single estimate of 322 the output, *p*outbreak. Values for most of the parameters in the model are constant and are 323 the same for each iteration, for example  $D_t$  is always 10 days. However, for each iteration, 324 the programme draws a random value for  $f_{bypass}$  for each of the feed and waste streams 325 and for the floor and also draws a random value for *TbDR* from their respective uniform 326 distributions with minimum and maximum values specified in Table 2 for  $f_{bvpass}$  and 327 between 40 and 90 days for *TbDR*. Thus the model output, *p<sub>outbreak</sub>*, is different for each 328 iteration giving 1 000 different versions of  $p_{outbreak}$  which are represented by the frequency 329 distribution in Figure 3.

#### 330 Validation of the model

Sargent (2011) discussed validation techniques for simulation models. Event validity where the output of the model is compared with epidemiological data is difficult due to the lack of case-control studies on recrudescence of HPAI after C&D. Extreme condition tests and sensitivity analyses where parameter values are altered gave expected outputs. For example setting  $f_{bypass}$  to 0 or 1 in Equation 2 gives  $f_{survive stream}$  equal to  $\gamma$  and 1.0

- 336 respectively as expected and reducing the percentage of infected birds in the source term
- from 50% to 5% increased the predicted average number of houses before a
- 338 recrudescence by 10-fold as expected. As part of face validity (Sargent, 2011),
- 339 representatives of poultry industry agreed the conceptual model represented in Figure 1
- and Figure 2 was correct and that the model's input-output relationships are reasonable
- 341 (Gale et al., 2018).
- 342 Results
- 343 Highly pathogenic avian influenza virus loadings in a poultry house at point of culling and
  344 removal (depopulation) of infected poultry
- The total HPAIV infectivity in the poultry house at the end of depopulation and after removal of 99.9% of the manure is  $3.89 \ 10^7 \ \text{EID}_{50}$ s (Supplementary Table S1). This is mainly from cloacal/oropharyngeal secretions and feathers in the remaining manure, with settling of airborne particulate making only a small contribution. By apportioning the infectivity according to the fractions, *f*<sub>stream\_manure</sub> and *f*<sub>stream\_airborne</sub> from Table 1 in Equation 1, the amounts of infectivity in each of the feed and waste streams and on the floor at the point of depopulation are calculated (Table 3).
- 352 Predicted exposures and risks of recrudescence to restocked poultry

The estimated median HPAIV exposures to the restocked poultry in terms of EID<sub>50</sub>s per poultry house are presented in Table 4. Secondary C&D (without dismantling) decreases the median exposure by 15-fold compared to just preliminary C&D alone. When dismantling is applied, the median exposures are decreased by a further 6-fold, and the overall decrease in exposure compared to preliminary C&D alone is over 88-fold. These decreases in exposure directly reduce the risks of recrudescence reflecting the linear nature of Equation 3 at low doses as shown in Table 4 by the number of poultry houses treated by a given C&D scenario before recrudescence occurs in one. Thus applying
secondary C&D without dismantling decreases the median number of poultry houses
which can be restocked by 16-fold compared to preliminary C&D alone, and dismantling
during secondary C&D has an additional 6-fold preventative effect.

The uncertainty in C&D efficacy is assessed by putting in lower and upper limits for the degree of by-pass (Table 2). The frequency distributions for the values of  $p_{outbreak}$  predicted by the model are presented in Figure 3. There is considerable uncertainty/variation in the predicted risks with estimates of the number of poultry houses treated with secondary C&D without dismantling ranging between 781 and 5.6 10<sup>7</sup> before a recrudescence occurs, i.e. almost five orders of magnitude (Table 4).

#### 370 Discussion

371 This study provides a risk-based approach for the control of HPAIV following an outbreak 372 in an enriched colony caged poultry house with specific reference to cleansing and 373 disinfection (C&D). It can be used as an evidence base for proportionate but effective 374 approaches to the application of C&D after an outbreak. It will inform policy-makers and 375 industry in their decision-making and could be applied to other avian pathogens such as 376 Newcastle disease virus using appropriate data. It could also be applied to other poultry production systems. A source-pathway-receptor framework model is developed with data 377 378 for HPAIV H5N1 and the output is the expected number of infected poultry houses treated 379 with the particular C&D scenario before recrudescence occurs when restocked with 380 susceptible birds. Uncertainty and variation in the degree of by-pass and variation in the 381 total time (days) between depopulation and restocking (TbDR) are modelled using Monte 382 Carlo simulations based on uniform distributions such that each value has an equal 383 probability of being drawn.

384 Central to the model is the estimation of the overall inactivation of virus by C&D using 385 Equation 2 and the degree of by-pass, i.e. the proportion of the residual infective material 386 that does not come into contact with disinfectant during the C&D process. Although there 387 are no data on the degree of by-pass during C&D with and without dismantling, the level of 388 by-pass is chosen to reflect what is thought to be operationally achievable. Such an 389 approach has been used previously for composting of catering waste (Gale, 2004) and for 390 treatment of sewage sludge (Gale, 2005). Obtaining experimental measurements of by-391 pass data would be logistically difficult in practice during C&D at an operational poultry 392 house not least from the point of view of experimental design. In particular it would be 393 difficult to quantify with reliability the infective material present in the poultry house and its 394 equipment without actually dismantling before commencing preliminary C&D and then 395 again before secondary C&D and finally after secondary C&D. In effect, dismantling would 396 be needed before and after both preliminary and secondary C&D to measure the amount 397 of infected material remaining which would be disturbed in the process.

398 The *TbDR* is variable and has a significant effect on the amount of decay and hence the 399 predicted risk. Thus with a D<sub>t</sub> of 10 days as used here, if the TbDR is 40 days, then there 400 is 4-log<sub>10</sub> decay. In the model, the median *TbDR* is 65 days and the maximum *TbDR* is 90 401 days over which 6.5 log<sub>10</sub> and 9 log<sub>10</sub> decays respectively are predicted according to the 402 model. However, this is based on the assumption that decay of the virus occurs linearly up 403 to 9 log<sub>10</sub> units over 90 days. Typically experimental data for virus decay demonstrate up 404 to  $\sim$ 4-log<sub>10</sub> decay. Thus there are uncertainties in extrapolation to greater than 4-log<sub>10</sub> 405 decay (i.e. over the 40 to 90 day TbDR period) particularly as virus decay is typically non-406 linear with a long tail perhaps representing a more resistant subpopulation of virus/matrix 407 complex. However, since  $D_t$  values for poultry litter are in the range of <5 to <10 minutes 408 and may be more appropriate than the  $D_t$  value of 10 days used here based on HPAIV 409 decay in chicken faeces (C. Warren, personal communication), it is not considered that the 410 risk estimates presented here are over-optimistic. A further source of uncertainty in the  $D_t$ 411 time for HPAIV decay arises from the temperature and humidity conditions. Thus Guan et 412 al. (2017) show that the absolute humidity is an important parameter in the inactivation of 413 H9N2 and H6N2 virus on both non-porous and wood surfaces. This is potentially important 414 for a poultry house being cleansed and disinfected because a lot of water is used, and the 415 relative humidity could be high due to the dampness.

416 Other assumptions in the exposure assessment are that disinfection is highly effective at inactivating the HPAIV H5N1 in the parts of the poultry house that it contacts as reflected 417 418 in the small values of  $\gamma$  for the "bulk" phase. It should be noted, however, that the actual 419 values of  $\gamma$  (Table 1) are not important in this risk assessment because the values of  $f_{bvpass}$ 420 (Table 2) are orders of magnitude higher and therefore dominate in Equation 2. Thus when 421  $f_{bypass}$  is much greater than  $\gamma$ ,  $f_{survive stream}$  tends to  $f_{bypass}$  in Equation 2. The model also 422 makes assumptions for the amounts of infectivity inhaled and ingested by the restocked 423 poultry. We consider these are worst case scenario estimates. Calculating the total virus 424 loading ( $N_{Chicken \ ID50}$ ) on the restocked poultry population as a whole addresses potential 425 issues of the spatial and temporal heterogeneity of exposures to individuals amongst the 426 restocked birds and in effect assumes each and every chicken is exposed to the same 427 very small sub-fraction (1/129 000<sup>th</sup>) of N<sub>Chicken ID50</sub>. Thus whether one bird in the flock 428 ingests the entire  $N_{Chicken \ ID50}$  dose, (and all the other 128 999 birds have zero exposure), or whether all 129 000 birds have an equal 1/129 000<sup>th</sup> of *N*<sub>Chicken\_ID50</sub> is not important for 429 430 the estimation of risk. As discussed for the model of the risks to livestock from composted 431 catering waste (Gale 2004), assuming all birds receive the same small sub-fraction as in 432 the latter scenario would predict higher risks than for the former scenario particularly for 433 high values of  $N_{Chicken \ ID50}$ . Equation 3 assumes that the dose-response is linear down to 434 one HPAI virion. Indeed, it is quite acceptable for  $N_{Chicken \ ID50}$  in Equation 3 to be a fraction 435 of an  $ID_{50}$  as in the median exposures from Table 4 because the dose-response is linear

436 and Equation 3 tends to  $p_{outbreak} = 0.69 \times N_{Chicken | D50}$  at low values of  $N_{Chicken | D50}$  (Gale, 437 2004). A recent attempt to develop a mechanistic dose-response model for viruses (Gale, 438 2018) has indicated a theoretical mechanism for a threshold effect where the virus dose 439 needs to be sufficiently high to overwhelm the host innate defences (e.g. mucins in 440 mucus), although this has not be proven experimentally. Clearly allowing for a **minimum** 441 infectious dose (MID) greater than one virion in the model would greatly diminish the 442 risks predicted here to the re-stocked poultry, depending on the magnitude of that MID. 443 This is because a single virion alone could not cause infection and those individual birds 444 exposed to doses below the MID would not be infected in reality but according to the 445 model here are at risk of infection. However, the exposure assessment would have to be 446 modified to predict the actual exposure to each and every one of the 129 000 chickens 447 taking into account all sources of variation in the source and pathway terms so as to 448 predict how many chickens are exposed to doses above the MID. A further consideration 449 is whether the exposure to individual poultry in the restocked birds is in one single 450 exposure or repeated over several days or weeks. Thus, exposure to small amounts of 451 virus distributed over a longer time might influence the virus inactivation by the immune 452 system resulting in a higher resistance against infection than in case of exposure to the 453 whole dose at once (Pujol et al., 2009; Marois et al., 2012). The risk assessment here 454 takes a worst case and ignores this possibility. Indeed, it is likely that the highest 455 exposures would occur early on for the restocked birds.

The predicted values of *p*<sub>outbreak</sub> in Figure 3 vary over some six orders of magnitude mainly reflecting the large range for *TbDR* in the uniform distribution and the assumption of loglinear decay of HPAIV over the *TbDR*. This together with more information on the degree of by-pass highlights areas of the model for which additional field data would be of use.

460 Overall, the probability of recrudescence of HPAI disease in caged layers following
461 depopulation and C&D can be considered very low based on applying secondary C&D and

462 the *TbDR* of 40 to 90 days. The results presented here confirm that the dual barriers of 463 both HPAIV decay over the *TbDR* and HPAIV inactivation by the preliminary followed by 464 secondary C&D processes minimise the risks of recrudescence. With preliminary C&D 465 alone, there is 97.5% credibility that 50 poultry houses could be restocked before a 466 recrudescence event. Applying secondary C&D without dismantling at the same level of 467 confidence this increases on average to 781 poultry houses that could be restocked before recrudescence occurs. Thus on the basis of these lower 95% credible intervals, the model 468 469 clearly demonstrates the importance of secondary C&D without dismantling over 470 preliminary C&D alone. However, dismantling during secondary C&D only increases this 471 lower credible interval by a further five-fold to 4 200 poultry houses, and given the 472 diminishing return, it is concluded that the extra protection to the restocked chickens 473 afforded by dismantling may not justify the financial expense or the time delay in 474 completing secondary C&D with respect to minimising the risk of onward spread of HPAIV. 475 In summary, secondary C&D has substantial benefit over preliminary C&D alone by 476 decreasing the risks to restocked poultry by ~16-fold while dismantling during secondary 477 C&D only adds a further six-fold decrease in risk to the restocked poultry. The level of by-478 pass used for these estimates is a key source of uncertainty requiring investigation with 479 experimental models.

#### 480 **Conclusions**

It is concluded that dismantling complex equipment in a poultry house during secondary cleansing and disinfection (C&D) may not be cost beneficial to the owner in terms of protecting against further outbreaks of HPAI. However, taking into account the uncertainty in the efficiency of C&D together with the variation in the time between depopulating and restocking, it is concluded that preliminary C&D alone is not sufficient and that secondary C&D (with or without dismantling) should be performed.

#### 487 Acknowledgements

- 488 This worked was funded by the UK Poultry Health and Welfare Group. Preliminary results
- 489 have been presented in an abstract form (Gale et al., 2018). The authors thank Caroline
- 490 Warren for provision of data and Sharon Brookes for manuscript review, the latter are
- 491 funded by Defra and the Devolved Administrations Scotland and Wales for Avian Influenza
- 492 Virus surveillance and diagnostics, in addition to Defra funded research projects.

#### 493 **Declaration of interest**

494 None declared.

#### 495 **Ethics committee**

496 Not relevant.

#### 497 Software and data repository resources

498 The model was not deposited in an official repository.

#### 499 **References**

- 500 Alarcon P, Brouwer A, Venkatesh D, Duncan D, Dovas CI, Georgiades G, Monne I, Fusaro A, Dan
- 501 A, Smietanka K, Ragias V, Breed AC, Chassalevris T, Goujgoulova G, Hjulsager CK, Ryan E,
- 502 Sanchez A, Niqueux E, Tammiranta N, Zohari S, Stroud D, Savic V, Lewis NS and Brown IH 2018.
- 503 Comparison of 2016–17 and previous epizootics of highly pathogenic avian influenza H5
- 504 Guangdong lineage in Europe. Emerging Infectious Diseases 24, 2270-2283.
- 505 Aldous EW, Seekings JM, McNally A, Nili H, Fuller CM, Irvine RM, Alexander DJ and Brown IH
- 506 2010. Infection dynamics of highly pathogenic avian influenza and virulent avian paramyxovirus
- 507 type 1 viruses in chickens, turkeys and ducks. Avian Pathology 39, 265-273.

- 508 EU 2005. EU Council Directive 2005/94/EC of 20 December 2005 on Community measures for the
- 509 control of avian influenza and repealing Directive 92/40/EEC Article 49. Retrieved on 20 January
- 510 2017 from <u>http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32005L0094</u>.
- 511 Gale P 2004. Risk to farm animals from pathogens in composted catering waste containing meat.
- 512 Veterinary Record 155, 77-82.
- 513 Gale P 2005. Land application of treated sewage sludge: Quantifying pathogen risks from
- 514 consumption of crops. Journal of Applied Microbiology 98, 380-396.
- 515 Gale P 2018. Using thermodynamic parameters to calibrate a mechanistic dose-response for
- 516 infection of a host by a virus. Microbial Risk Analysis 8, 1-13.
- 517 Gale P, Kelly L and Snary EL 2015. Qualitative assessment of the entry of capripoxviruses
- 518 into Great Britain from the European Union through importation of ruminant hides, skins
- 519 and wool. Microbial Risk Analysis 1, 13-18.
- 520 Gale P, Sechi S, Horigan V and Kelly L 2018. Quantitative assessment for the risk of
- 521 recrudescence of avian influenza in caged layer houses following depopulation: The effect of
- 522 cleansing, disinfection and dismantling of complex equipment. British Poultry Abstracts 14, 9.
- 523 Goddard AD, Donaldson NM, Horton DL, Kosmider RD, Kelly LA, Sayers AR, Breed AC,
- 524 Freuling, CM, Muller T, Shaw SE, Hallgren G, Fooks AR and Snary, EL 2012. A quantitative
- 525 release assessment for the noncommercial movement of companion animals: risk of rabies
- reintroduction to the United Kingdom. Risk Analysis 32, 1769-1783.
- 527 Guan J, Chan M and VanderZaag A 2017. Inactivation of avian influenza viruses on porous and
  528 non-porous surfaces is enhanced by elevating absolute humidity. Transboundary and Emerging
  529 Diseases 64, 1254-1261.
- Hansen R, Brown I, Brookes S, Welchman D and Cromie R 2018. Current status of avian influenzain Europe and the UK. Veterinary Record 182, 54-55.

- 532 Horigan V, Gale P, Adkin A, Brown I, Clark J and Kelly L 2019. A qualitative risk
- assessment of cleansing and disinfection requirements after an avian influenza outbreak in
- 534 commercial poultry. British Poultry Science 60, 691-699.
- 535 Kelly L, Kosmider R, Gale P and Snary E 2018. Qualitative import risk assessment: A
- proposed method for estimating the aggregated probability of entry of infection. Microbial
- 537 Risk Analysis 9, 33-37.
- Lucyckx KY, Weyenberg SV, Dewulf J, Herman L, Zoons J, Vervaet E, Heyndrickx M and De Reu
  K 2015. On-farm comparisons of different cleaning protocols in broiler houses. Poultry Science 94,
  1986-1993.
- 541 Marois I, Cloutier A, Garneau E and Richter MV 2012. Initial infectious dose dictates the innate,
- adaptive, and memory responses to influenza in the respiratory tract. Journal of Leukocyte Biology92, 1–12.
- 544 OIE 2018. OIE situation report for highly pathogenic avian influenza. Last updated 31 August 2018.
- 545 Retrieved on 30 May 2019 from
- 546 <u>http://www.oie.int/fileadmin/Home/eng/Animal Health in the World/docs/pdf/OIE AI situation re</u>
- 547 <u>port/OIE\_SituationReport\_AI\_August2018.pdf</u>.
- 548 OIE 2019. Terrestrial animal health code. Section 2. Risk analysis. Last updated 28 June
- 549 2019. Retrieved on 29 November 2019 from
- 550 https://www.oie.int/fileadmin/Home/eng/Health\_standards/tahc/current/chapitre\_import\_ris
- 551 k\_analysis.pdf.
- 552 Pujol JM, Eisenberg JE, Haas CN and Koopman JS 2009. The effect of ongoing exposure
- 553 dynamics in dose response relationships. PLOS Computational Biology 5, e1000399.
- 554 Roberts H, Gale P and Brown I 2018. Findings of H5N6 HPAI in wild birds in UK/Ireland and LPAI
- 555 in poultry in France. Retrieved on 30 May 2019 from

- 556 https://www.gov.uk/government/uploads/system/uploads/attachment\_data/file/682151/avian-flu-
- 557 <u>wild-birds-H5N6-180213.pdf</u>.
- 558 Sargent RG 2011. Verification and validation of simulation models. In proceedings of the 2011
- 559 Winter Simulation Conference, pp. 183–198. Retrieved on 3 December 2019 from
- 560 https://www.informs-sim.org/wsc11papers/016.pdf.
- 561 Scottish Government 2016. Calculating the amount of poultry manure produced. Retrieved on 20
- 562 January 2017 from <u>www.gov.scot/Resource/Doc/278281/0096546.doc</u>.
- 563 Spekreijse D, Bouma A, Koch G and Stegeman JA 2011. Airborne transmission of a highly
- 564 pathogenic avian influenza virus strain H5N1 between groups of chickens quantified in an
- 565 experimental setting. Veterinary Microbiology 152, 88-95.
- 566 Yamamoto Y, Nakamura K, Okamatsu M, Miyazaki A, Yamada M and Mase M 2008. Detecting
- solution avian influenza virus (H5N1) in domestic duck feathers. Emerging Infectious Diseases 14, 1671-
- 568 1672.

| 571 Tab | le 1. Fraction | s of infectivity | entering, | surviving | cleansing | and di | isinfection | (C&D) | and |
|---------|----------------|------------------|-----------|-----------|-----------|--------|-------------|-------|-----|
|---------|----------------|------------------|-----------|-----------|-----------|--------|-------------|-------|-----|

| 572 | inhaled/ingested through | the different streams within | the poultr | ry house as use | d in the model. |
|-----|--------------------------|------------------------------|------------|-----------------|-----------------|
|     |                          |                              |            | 2               |                 |

|               | Manure                            | Airborne                 | γ                            | <b>f</b> <sub>inhale</sub> | <b>f</b> <sub>ingest</sub> |
|---------------|-----------------------------------|--------------------------|------------------------------|----------------------------|----------------------------|
|               | <b>f</b> <sub>stream_manure</sub> | particulate              |                              |                            |                            |
|               |                                   | <b>f</b> stream_airborne |                              |                            |                            |
| Feed streams  |                                   |                          |                              |                            |                            |
| Metal trough  | 0.001                             | 0.01                     | 3.16 10 <sup>-4</sup> (Feed  | 0.0001                     | 0.5                        |
|               |                                   |                          | pan)                         |                            |                            |
| Moving hopper | 0.001                             | 0.01                     | 7.9 10 <sup>-5</sup> (Feed   | 0.1                        | 0.5                        |
|               |                                   |                          | hopper)                      |                            |                            |
| Moving chain  | 0.001                             | 0.01                     | 7.9 10 <sup>-5</sup> (Feed   | 0.1                        | 0.5                        |
|               |                                   |                          | hopper)                      |                            |                            |
| Waste streams |                                   |                          |                              |                            |                            |
| Manure belt   | 0.897                             | 0.20                     | 2.5 10 <sup>-6</sup> (Loose  | 0.1                        | 0.01                       |
|               |                                   |                          | material)                    |                            |                            |
| Cross         | 0.05                              | 0.10                     | 7.9 10 <sup>-5</sup> (Feed   | 0.1                        | 0.01                       |
| conveyor      |                                   |                          | hopper)                      |                            |                            |
| Air drying    | 0.05                              | 0.05                     | 6.3 10 <sup>-5</sup> (Air    | 0.1                        | 0.1                        |
| equipment     |                                   |                          | outlet)                      |                            |                            |
| Floor         | 0                                 | 0.62                     | 7.9 10 <sup>-5</sup> (Floor) | 0.1                        | 0                          |

 $f_{stream\_manure}$  and  $f_{stream\_airborne}$ , respective fractions of masses of manure and settled particulate from airborne material within different streams in the poultry house.

 $\gamma$ , fraction of highly pathogenic avian influenza virus surviving C&D of the 'bulk' phase based on data for total aerobic bacteria counts surviving C&D of an operational poultry house (Lucyckx et al., 2015) in the most closely related equipment given in parentheses.

*f<sub>inhale</sub>*, fraction converted to dust during operation of poultry house and inhaled by the restocked poultry.

*f<sub>ingest</sub>*, fraction ingested by the restocked poultry during pecking and feeding.

577 Table 2. Minimum and maximum values used to define the uniform distributions for the fraction by-

578 passing the 'bulk' phase (*f*<sub>bypass</sub>) within the poultry house during cleansing and disinfection.

|              | Feed str | eams     |              | Waste stream | ns       |            |         |
|--------------|----------|----------|--------------|--------------|----------|------------|---------|
| Infected     | Metal    | Moving   |              |              | Cross    | Air drying |         |
| components   | trough   | hopper   | Moving chain | Manure belt  | conveyer | equipment  | Floor   |
| Preliminary  | 0.05 –   | 0.01 to  |              |              | 0.01 –   |            | 0.01 –  |
| disinfection | 0.20     | 0.1      | 0.01 to 0.1  | 0.1 - 0.4    | 0.1      | 0.01 – 0.1 | 0.1     |
| Secondary:   |          |          |              |              |          |            |         |
| By-pass      |          |          |              |              |          |            |         |
| rate without | 0.005    | 0.005 -  |              |              | 0.005 –  | 0.005 -    | 0.005 – |
| dismantling  | - 0.02   | 0.02     | 0.01 - 0.04  | 0.025 – 0.1  | 0.02     | 0.02       | 0.02    |
| Secondary:   |          |          |              |              |          |            |         |
| By pass      |          |          |              |              |          |            |         |
| rate with    | 0.0025   | 0.0025 – |              | 0.005 –      | 0.0025 – | 0.0025 –   | 0.005 – |
| dismantling  | - 0.01   | 0.01     | 0.005 – 0.02 | 0.02         | 0.01     | 0.01       | 0.02    |

- 584 Table 3. Source Term: Estimated amounts of highly pathogenic avian influenza virus infectivity
- 585 (units of egg infectious dose 50%) in the different streams within poultry house at the point of
- 586 *depopulation of infected poultry.*

|     |             | Feed strea           | ams                  |                      | Waste stream         | ns                   |                      |                     |
|-----|-------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|
|     | Infected    | Metal                | Moving               |                      |                      | Cross                | Air drying           |                     |
|     | components  | trough               | hopper               | Moving chain         | Manure belt          | conveyer             | equipment            | Floor               |
|     | Manure      | 3.88 10 <sup>4</sup> | 3.88 10 <sup>4</sup> | 3.88 10 <sup>4</sup> | 3.48 10 <sup>7</sup> | 1.94 10 <sup>6</sup> | 1.94 10 <sup>6</sup> | 0                   |
|     | Airborne    |                      |                      |                      |                      |                      |                      |                     |
|     | particulate | 1.5 10 <sup>3</sup>  | 1.5 10 <sup>3</sup>  | 1.5 10 <sup>3</sup>  | 3.0 10 <sup>4</sup>  | 1.5 10 <sup>4</sup>  | 7.5 10 <sup>3</sup>  | 9.2 10 <sup>4</sup> |
| 587 |             |                      |                      |                      |                      |                      |                      |                     |
| 588 |             |                      |                      |                      |                      |                      |                      |                     |
| 589 |             |                      |                      |                      |                      |                      |                      |                     |
| 590 |             |                      |                      |                      |                      |                      |                      |                     |

- 594 Table 4. Median values and 95% credible intervals (brackets) as predicted by the model for highly
- 595 pathogenic avian influenza virus exposures to a restocked chicken flock in a poultry house, and the
- *risk of infection of the poultry house.*

|               | Total poultry                                 |                                                |                                                                   |  |  |  |
|---------------|-----------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|--|--|--|
|               | exposure                                      |                                                |                                                                   |  |  |  |
|               | ( <i>Exposure_EID</i> <sub>50</sub> ) as      | Probability (per                               |                                                                   |  |  |  |
|               | egg infectious dose                           | poultry house) of                              | Number of poultry                                                 |  |  |  |
|               | 50% units per                                 | infection of poultry                           | houses/sheds before one                                           |  |  |  |
|               | poultry house                                 | house (p <sub>outbreak</sub> )                 | outbreak (1/p <sub>outbreak</sub> )                               |  |  |  |
| Preliminary   | 0.30 (1.3 10 <sup>-3</sup> to                 | 8.3 10 <sup>-5</sup> (3.6 10 <sup>-7</sup> to  |                                                                   |  |  |  |
| C&D alone     | 71.2)                                         | 2.0 10-2)                                      | 1.2 10 <sup>4</sup> (50 to 2.8 10 <sup>6</sup> )                  |  |  |  |
| Preliminary   |                                               |                                                |                                                                   |  |  |  |
| followed by   |                                               |                                                |                                                                   |  |  |  |
| secondary     |                                               |                                                |                                                                   |  |  |  |
| C&D without   | 2.0 10 <sup>-2</sup> (6.4 10 <sup>-5</sup> to | 5.1 10 <sup>-6</sup> (1.7 10 <sup>-8</sup> to  |                                                                   |  |  |  |
| dismantling   | 4.7)                                          | 1.3 10 <sup>-3</sup> )                         | 1.9 10 <sup>5</sup> (7.8 10 <sup>2</sup> to 5.7 10 <sup>7</sup> ) |  |  |  |
| Preliminary   |                                               |                                                |                                                                   |  |  |  |
| followed by   |                                               |                                                |                                                                   |  |  |  |
| secondary     |                                               |                                                |                                                                   |  |  |  |
| C&D with      | 3.4 10 <sup>-3</sup> (1.2 10 <sup>-5</sup> to | 0.95 10 <sup>-6</sup> (3.4 10 <sup>-9</sup> to |                                                                   |  |  |  |
| dismantling   | 0.87)                                         | 2.4 10-4)                                      | 1.1 10 <sup>6</sup> (4.2 10 <sup>3</sup> to 2.9 10 <sup>8</sup> ) |  |  |  |
| C&D: Cleansin | C&D: Cleansing and disinfection.              |                                                |                                                                   |  |  |  |

| 602 | Figure 1: Source term contributions of highly pathogenic avian influenza virus as                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 603 | egg infectious dose 50% (EID <sub>50</sub> ) units from infected chickens in manure ( <i>EID</i> <sub>50_manure</sub> ) |
| 604 | and as particulate matter in the air which settle as dust ( <i>EID</i> 50_airborne) at point of                         |
| 605 | depopulation of poultry house. The fractions of manure ( <i>f</i> stream_manure shown as                                |
| 606 | percentages in normal font) and the fractions of airborne particulate (fstream_airborne                                 |
| 607 | shown as percentages in italic font) entering each stream are from Table 1.                                             |
| 608 |                                                                                                                         |
| 609 |                                                                                                                         |
| 610 | Figure 2: Pathway detailing the fate of highly pathogenic avian influenza virus                                         |
| 611 | infectivity as egg infectious dose 50% (EID $_{50}$ ) units to calculate total exposure to                              |
| 612 | restocked chicken poultry flock (Receptor) after cleansing and disinfection (C&D)                                       |
| 613 | and virus decay over the time between depopulation of infected chickens and                                             |
| 614 | restocking with new chickens (TbDR).                                                                                    |
| 615 |                                                                                                                         |
| 616 |                                                                                                                         |
| 617 | Figure 3: Frequency distribution for the values of the probability of recrudescence                                     |
| 618 | per chicken poultry house ( <i>poutbreak</i> ) as predicted by 1 000 iterations of the model for                        |
| 619 | a) preliminary cleansing and disinfection (C&D) alone; b) preliminary C&D followed                                      |
| 620 | by secondary C&D without dismantling; and c) preliminary C&D followed by                                                |
| 621 | secondary C&D with dismantling.                                                                                         |
| 622 |                                                                                                                         |
| 623 |                                                                                                                         |

# **Supplementary Material S1**

animal. The international journal of animal biosciences.

Risk assessment for recrudescence of avian influenza in caged layer houses following depopulation: The effect of cleansing, disinfection and dismantling of equipment.

P. Gale<sup>1</sup>, S. Sechi<sup>2</sup>, V. Horigan<sup>1</sup>, R. Taylor<sup>1</sup>, I. Brown<sup>3</sup> and L. Kelly<sup>1,2</sup>

<sup>1</sup>Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB,

UK.

<sup>2</sup>Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH.

<sup>3</sup>OIE/FAO International Reference Laboratory for Avian Influenza, Newcastle Disease and Swine Influenza, Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.

# The source term: Virus loadings in the poultry house

Loadings from the three bird matrices, namely feathers, faecal (cloacal), and oropharyngeal secretions.

Titres of highly pathogenic avian influenza virus (HPAIV) are typically reported as egg infectious dose 50% (EID<sub>50</sub>) units. The total HPAIV infectivity from the three bird matrices namely feathers, faeces and oropharyngeal secretions which goes into the "manure" (EID<sub>50 manure</sub>) is calculated from data in Yamamoto et al. (2008) and Scottish Government (2016) together with unpublished data from the Animal and Plant Health Agency (APHA). There are few published shedding data for HPAIV in chickens and the risk assessment therefore draws on published data for other bird species. Yamamoto et al. (2008) presented H5N1 viral titres in feathers, oropharyngeal swabs and cloacal swabs from three domestic ducks inoculated with H5N1. The titres were not only highest in the feathers (3.8 to 6.9 log<sub>10</sub> EID<sub>50</sub> /ml) but also were detected for longer periods of time (8 days post infection) compared to in cloacal and oropharyngeal secretions. Although the presence of H5N1 virus in bird feathers is an important consideration, feathers are lost infrequently compared to oropharyngeal and cloacal secretions which are produced daily, and therefore feathers may only make a small contribution to the "manure" in the poultry sheds. Viral titres of H5N1 were higher in oropharyngeal secretions than in cloacal secretions and the data for oropharyngeal secretions are therefore used in this risk assessment. This represents a worst case scenario because much more cloacal secretion is produced than oropharyngeal. According to Yamamoto et al. (2008), the highest duck oropharyngeal EID<sub>50</sub> was at 4 days post infection at 10<sup>3.7</sup> EID<sub>50</sub>/ml. It is assumed that 1 ml

equates to 1 g of manure and therefore the viral loading is  $10^{3.7}$  EID<sub>50</sub>/g manure produced by an infected bird. APHA unpublished data indicate that peak shedding titres for H5N1 clade 2.2 virus in chickens and turkeys are similar at  $10^{3.0}$  to  $10^{4.0}$  EID<sub>50</sub>/ml.

Manure production data for poultry are used to estimate the amount of solid secretion produced per bird per day. Caged layers (over 17 weeks in age) have been reported to produce 0.84 tonnes of manure per 1 000 birds per week (Scottish Government, 2016). This is equivalent to 120 g per bird per day. The total viral infectivity produced in the poultry house at point of culling from cloacal, oropharyngeal and feathers is calculated as 120 g/bird/day x 64 500 infected birds x  $10^{3.7}$  EID<sub>50</sub>/g = 3.88  $10^{10}$  EID<sub>50</sub>/day. This is in the form of manure, which is removed from the house at a constant rate by the moving manure belt. For example, 129 000 poultry would produce 15.4 tonnes of manure per day, and the poultry house would rapidly fill up with manure if it were not removed. It is assumed that 99.9% of manure is removed from the poultry house each day and that this would have been removed in the 24 hours prior to culling, with 0.1% being left in the poultry house after culling and removal of the infected poultry. Thus 15.4 kg of manure are left each day, representing 3.88  $10^7$  EID<sub>50</sub> (*EID*<sub>50</sub>\_manure) in the poultry house at the point of culling and depopulation (Table S1).

# Airborne infectivity which settles as dust.

The airborne particulate HPAIV infectivity which settles as dust (EID<sub>50\_airborne</sub>) is calculated from data of Spekreijse et al. (2011). To estimate HPAIV H5N1 loadings from air and dust in the poultry house immediately prior to the point of culling, the number of airborne EID<sub>50</sub> produced per infected chicken per day is calculated from the air sampling data of Spekreijse et al. (2011) who collected 20 air samples over 10 days, i.e., two samples per day in each of two rooms with chickens experimentally infected with HPAIV H5N1. Each sample was collected over 10 minutes at a rate of 8 m<sup>3</sup>/minute and thus represents 1.33 m<sup>3</sup>. In one room of volume 22 m<sup>3</sup>, one air sample contained 10<sup>1.6</sup> EID<sub>50</sub> on day 2 and another on day 3 contained 10<sup>1.3</sup> EID<sub>50</sub> (totalling 59.8 EID<sub>50</sub> in the two samples combined). The other 18 samples from that room collected over days 1 to 10 were negative. As a worst case scenario only the data from the two positive shedding days (days 2 and 3) are used here. The total volume sampled in that one room over those two days (i.e. four samples) was  $4 \times 1.33 \text{ m}^3 = 5.33 \text{ m}^3$  of air. Thus 13 infected birds produced 59.8 EID<sub>50</sub> in 5.33 m<sup>3</sup> of air. Assuming this was representative of the 22 m<sup>3</sup> volume of the whole room, then 13 infected birds produced 246 EID<sub>50</sub> in the room as a whole. The number of airborne EID<sub>50</sub> is thus 18.9 per bird in the first room. In the second identical room, however, 56 birds were infected but no airborne infectivity was detected. Combining the results from the two rooms gives 59.8  $EID_{50}$  in 10.67 m<sup>3</sup> (8 air samples over two days) which is 5.6 EID<sub>50</sub> per m<sup>3</sup>. Over 44 m<sup>3</sup> (i.e. the two 22 m<sup>3</sup> volume rooms), this is 246 EID<sub>50</sub> in both rooms from a total of 69 infected birds over two days. The airborne output per infected bird is therefore 3.57 EID<sub>50</sub> per infected bird. Since data from two days are used, the estimated airborne infectivity per infected bird per shedding day is 1.78 EID<sub>50</sub>. For the H5N1 HPAIV infected chickens, the mean infectious period (days of shedding) was 1.3 days (Spekreijse et al., 2011). Assuming 64 500 H5N1-infected birds are present at the time of culling and depopulation then the total airborne loading (EID<sub>50 airborne</sub>) is 64 500

infected birds x 1.3 days x 1.78  $EID_{50} = 1.5 \ 10^5 \ EID_{50}s$  (Table S1). It is assumed that all of this airborne infectivity has settled as dust within the house at the end of depopulation. Poultry catching normally involves unrest and wing-flapping, which potentially can redistribute the virus load in the poultry house. This together with the generation of aerosols during the cull process is assumed to be included in the estimated loading in cloacal secretions which are based on oropharyngeal titres.

Table S1. Summary of predicted levels of highly pathogenic avian influenza H5N1 virus (EID<sub>50</sub>s) in a chicken poultry house at point of depopulation of poultry.

| Source                                                                           | Assumptions                                                                   | Remaining infectivity at time of culling (EID $_{50}$ ) |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|
| Cloacal,<br>oropharyngeal and<br>feathers ( <i>EID</i> 50_manure)                | 99.9% is removed per day as manure                                            | 3.88 10 <sup>7</sup>                                    |  |  |  |
| Airborne particulate<br>( <i>EID</i> 50_airborne)                                | All settles as dust                                                           | 1.5 10⁵                                                 |  |  |  |
| Total                                                                            | Sum of <i>EID<sub>50_manure</sub></i> and<br><i>EID<sub>50_airborne</sub></i> | 3.89 10 <sup>7</sup>                                    |  |  |  |
| Assumes 129 000 birds in the poultry house of which 50% are infected at culling. |                                                                               |                                                         |  |  |  |

EID<sub>50</sub>: Egg infectious dose 50%

# References

Scottish Government 2016. Calculating the amount of poultry manure produced. Retrieved on 20 January 2017 from <a href="http://www.gov.scot/Resource/Doc/278281/0096546.doc">www.gov.scot/Resource/Doc/278281/0096546.doc</a>.

Spekreijse D, Bouma A, Koch G and Stegeman JA 2011. Airborne transmission of a highly pathogenic avian influenza virus strain H5N1 between groups of chickens quantified in an experimental setting. Veterinary Microbiology 152, 88-95.

Yamamoto Y, Nakamura K, Okamatsu M, Miyazaki A, Yamada M and Mase M 2008. Detecting avian influenza virus (H5N1) in domestic duck feathers. Emerging Infectious Diseases 14, 1671-1672.

# **Supplementary Material S2**

animal. The international journal of animal biosciences.

Risk assessment for recrudescence of avian influenza in caged layer houses following depopulation: The effect of cleansing, disinfection and dismantling of equipment.

P. Gale<sup>1</sup>, S. Sechi<sup>2</sup>, V. Horigan<sup>1</sup>, R. Taylor<sup>1</sup>, I. Brown<sup>3</sup> and L. Kelly<sup>1,2</sup>

<sup>1</sup>Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB,

UK.

<sup>2</sup>Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH.

<sup>3</sup>OIE/FAO International Reference Laboratory for Avian Influenza, Newcastle Disease and Swine Influenza, Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.

The time period between depopulation of the infected poultry and restocking with the new birds

The minimum possible **time period between depopulation of the infected poultry and restocking with the new birds (***TbDR***) is 42 days (EU, 2005). There are typically 2 days between depopulation and preliminary <b>cleansing and disinfection (C&D)**, 7 days between the first round of cleaning and the second round of cleaning in secondary C&D, and 7 days for secondary C&D. In addition, the re-population of commercial poultry holdings shall not take place for a period of 21 days following the date of completion of the final cleansing and disinfection as provided for in Article 48 the restocking information (EU, 2005). This does not take into account the extra time for decay gained by the practice of dismantling. The expert opinion estimation of *TbDR* is between 40 and 90 days (P. McMullin, personal communication), and these two values were used to define a uniform distribution.

# Estimating the fraction of pathogen surviving in the properly cleansed and disinfectant-treated bulk phase portion

Virkon S is a disinfectant officially authorised for C&D in the UK. At 21°C, a 1-log<sub>10</sub> inactivation of **highly pathogenic avian influenza virus (HPAIV)** H5N1 sprayed onto fomite surfaces (plastic, metal and wood) requires 3.0 - 3.5 minutes when treated immediately with 1% (w/v) Virkon S disinfectant (C. Warren, personal communication) confirming that this disinfectant rapidly inactivates HPAIV. However, there is no information on whether the inactivation is log-linear and over how many logs. Furthermore in the poultry house environment, the virus will be physically sequestered in an organic matrix (feed, debris, faeces, poultry litter and other secretions) which would not only buffer

the pH but also protect the virus through inactivating the residual disinfectant (Lucyckx et al., 2015). Thus dried faecal pats, accumulated dust, layering of faecal material and matted feathers on the muck belts are the areas to be considered not only in terms of HPAIV loading, but also in terms of the matrix for decay and inactivation (R. Davies, personal communication). To address this, total aerobic bacteria count data presented by Lucyckx et al. (2015) for C&D of an operational poultry house are used as the data source for the degree of inactivation by C&D. 1% Virkon S is effective against bacteria and viruses (Hernndez et al. 2000) and the total aerobic bacteria counts recorded by Lucyckx et al. (2015) before and after C&D are used to calculate the **fraction of pathogen surviving C&D in those parts of the poultry house that can be reached by C&D (** $\gamma$ ) (i.e. in the properly cleansed and disinfectant-treated bulk phase portion). These values are presented in Table 1 and represent the values of  $\gamma$  used in Equation 2 for the different streams.

# Estimating the fraction of debris that by-passes the bulk phase

The fractions of debris and organic material (and hence associated viruses) in those parts within each stream where C&D cannot reach with and without dismantling and which therefore by-pass the bulk phase and effective C&D ( $f_{bypass}$ ) are set out in Table 2 and define the  $f_{bypass}$  parameter for each stream in Equation 2. There are no experimental data for the amount of material which does not receive effective C&D. These values are therefore determined from estimations made by visiting a chicken layer farm. The approach used was to estimate lower and upper values for a uniform distribution. For example, it was estimated that between 10% and 40% of virus in material on the manure belt could survive preliminary disinfection.

In effect, *f<sub>bypass</sub>* reflects the efficiency of C&D at operational scale, the smaller *f<sub>bypass</sub>*, the greater the efficiency as less of the virus-contaminated material avoids C&D. The preliminary C&D is considered not to be as efficient as secondary C&D. After preliminary C&D, a considerable amount of organic matter is still present and it is assumed for example that 25% remains on the manure belt (Table 2). During preliminary C&D, dead birds and the litter are cleared out, however there is no degreasing or scrubbing. There is only drenching with disinfectant. Thus preliminary C&D is assumed to be of relatively low efficiency (Table 2) depending on the stream. For example, it is assumed that the manure belt is least effectively cleansed, with 10 to 40% of material not being cleansed/disinfected properly. In contrast, it is assumed that only 1 to 10% of the floor is not cleansed in preliminary C&D. While the physical disturbance of preliminary C&D may produce aerosols these are negligible compared to the proportions of material assumed to be remaining overall.

In contrast to preliminary C&D, secondary C&D is much more thorough with power washes and fine brushes through greater workforce deployment to maximise removal of organic material. Degreasing and disinfection are undertaken and then repeated after 7 days. This is reflected in the smaller fractions of material that by-pass the process in secondary C&D (Table 2) compared to preliminary C&D. Dismantling further reduces  $f_{bypass}$  compared to not dismantling for the equipment streams. Again the fractions for by-pass are based on expert opinion of what is achievable in practice rather than experimental data. Two secondary C&D scenarios are considered, namely without and with dismantling. Higher percentage by-pass is assumed without dismantling (Table 2).

# Exposure through inhalation of dust and ingestion by the restocked poultry

As for the by-pass fractions, the **fractions of the infective material remaining after C&D that are inhaled (***finhale***) and ingested (***fingest***) by the restocked poultry** as out in Table 1 for each of the streams are based on expert opinion and assumptions in the absence of data. Although there is considerable uncertainty in these estimates, it is considered they are worst case assumptions. It is assumed that moving parts convert 10% of any remaining infectivity into dust which is inhaled by the restocked of birds. Similarly 10% of any material remaining on the floor is suspended into the air through the disturbance by people walking through the poultry house. It is assumed that only 0.01% of any material left in the metal troughs is actually inhaled by the birds. It is assumed that 50% of any material left in the metal troughs, moving hoppers and chains is ingested by the birds, while the birds have no access to any material on the floors and only limited access to the waste streams.

# Calculation of exposures to restocked poultry

The **infectivity ingested by the restocked poultry through each stream** (*EID*<sub>50 ingest stream</sub>) was calculated as

$$EID_{50\_ingest\_stream} = EID_{50\_source\_stream} \times 10^{-\frac{TbDR}{D_t}} \times f_{survive\_stream} \times f_{ingest}$$

where *EID*<sub>50\_source\_stream</sub> is the source term infectivity in a given stream immediately after depopulation of the infected poultry as calculated by Equation 1 and *f*<sub>survive\_stream</sub> is the fraction of input pathogen surviving C&D for each stream as calculated by Equation 2. Similarly the infectivity inhaled by the restocked poultry through each stream (*EID*<sub>50\_inhale\_stream</sub>) was calculated as

$$EID_{50\_inhale\_stream} = EID_{50\_source\_stream} \times 10^{\frac{TbDR}{D_t}} \times f_{survive\_stream} \times f_{inhale}$$

It should be noted that infective material present in the manure source term in Equation 1 may be converted to dust during the operation of equipment in the restocked poultry house and hence inhaled and thus it is appropriate to calculate  $EID_{50\_inhale\_stream}$  from  $EID_{50\_source\_stream}$  from Equation 1.

The **total poultry exposure** (*Exposure\_EID*<sub>50</sub>) was calculated for each of the three C&D scenarios as.

$$Exposure\_EID_{50} = \sum_{All \ streams} EID_{50\_ingest\_stream} + \sum_{All \ streams} EID_{50\_inhale\_stream}$$

Receptor term: Using dose-response to estimate risk of infection for highly pathogenic avian influenza virus H5N1

While the EID<sub>50</sub> is a useful assay to measure levels of live virus in manure components and airborne particulate, a dose-response is required to convert EID<sub>50</sub> units into live chicken ID<sub>50</sub> units, where one chicken ID<sub>50</sub> is the amount of infectious virus which when given to a single chicken has a 50% probability of infecting that chicken. According to Aldous et al. (2010) there are 10<sup>3.4</sup> EID<sub>50</sub> units per chicken ID<sub>50</sub> for H5N1 HPAIV (A/turkey/Turkey/1/05) in live chickens on challenge through both the intraocular (0.1 ml) and intranasal (0.1 ml) routes. Since H7N1 HPAIV is less infectious to chickens than H5N1 HPAIV with an ID<sub>50</sub> of 10<sup>4.6</sup> EID<sub>50</sub> (Aldous et al., 2010), the H5N1 data are used here. Thus it is assumed that there are 10<sup>3.4</sup> EID<sub>50</sub>/chicken ID<sub>50</sub> and the **number of chicken ID<sub>50</sub>s ingested by the chicken flock as a whole within the poultry shed (***Nchicken\_ID50***) is given by** 

 $N_{Chicken\_ID50} = \frac{Exposure\_EID_{50}}{10^{3.4}}.$ 

# References

Aldous EW, Seekings JM, McNally A, Nili H, Fuller CM, Irvine RM, Alexander DJ and Brown IH 2010. Infection dynamics of highly pathogenic avian influenza and virulent avian paramyxovirus type 1 viruses in chickens, turkeys and ducks. Avian Pathology 39, 265-273.

EU 2005. EU Council Directive 2005/94/EC of 20 December 2005 on Community measures for the control of avian influenza and repealing Directive 92/40/EEC Article 49. Retrieved on 20 January 2017 from <a href="http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32005L0094">http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32005L0094</a>.

Hernndez A, Martro E, Andreu LM, Martin M and Ausina V 2000. Assessment of in-vitro efficacy of 1% VirkonS against bacteria, fungi, viruses and spores by means of AFNOR guidelines. Journal of Hospital Infection 46, 203-209.

Lucyckx KY, Weyenberg SV, Dewulf J, Herman L, Zoons J, Vervaet E, Heyndrickx M and De Reu K 2015. On-farm comparisons of different cleaning protocols in broiler houses. Poultry Science 94, 1986-1993.

# **Supplementary Material S3**

animal. The international journal of animal biosciences.

Risk assessment for recrudescence of avian influenza in caged layer houses following depopulation: The effect of cleansing, disinfection and dismantling of equipment.

P. Gale<sup>1</sup>, S. Sechi<sup>2</sup>, V. Horigan<sup>1</sup>, R. Taylor<sup>1</sup>, I. Brown<sup>3</sup> and L. Kelly<sup>1,2</sup>

<sup>1</sup>Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB,

UK.

<sup>2</sup>Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH.

<sup>3</sup>OIE/FAO International Reference Laboratory for Avian Influenza, Newcastle Disease and Swine Influenza, Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK.

R code

#----

# run: "R-studio desktop"

# written: "R version 3.4.1"

#----

### Model ----

Risk\_Calc <- function(Mass, EID50, Number\_Birds, p\_Remain, days\_of\_shedding,

Scenario, Parameters1, Parameters2,

ns, min, max, min\_TbDR, max\_TbDR,

Parameters4, Parameters5,

EID50\_oralID50, CV)

{

Source\_term\_calculation <-function(Mass, EID50, Number\_Birds, p\_Remain, days\_of\_shedding)

{

```
Cloacal=Mass*EID50[1]*Number_Birds*0.5*p_Remain
GAL=EID50[2]*Number_Birds*0.5*days_of_shedding
I=cbind(Cloacal,GAL)
rownames(I)="Infectivity"
return(Source_term_calculation=I)
}
```

# Estimating the uniform distributions for the fraction by-passing the bulk phase simul<-function(ns, min, max, min\_TbDR, max\_TbDR)

```
{
            I1=as.numeric(dim(min)[1])
            l2=as.numeric(dim(min)[2])
            y<-array(dim=c(l1,l2,ns))
            y1<-c()
            y_2 < array(dim=c(l_1+1,l_2,n_s))
            for (j in 1:ns){
             for (i in 1:11){
               for (k in 1:l2){
                y[i,k,j]<-runif(1, min[i,k], max[i,k])</pre>
               }#k
             }#i
             y1<-runif(1, min TbDR, max TbDR)
             y2[,,j]<-array(rbind(y[,,j],y1))
             }#j
            return(Parameters3=y2)
             }#fun
Source term<-Source term calculation (Mass, EID50, Number Birds,
```

p\_Remain, days\_of\_shedding)

# Initial infection on Equipment

```
Parameters3<-simul(ns, min, max, min_TbDR, max_TbDR)
nc=as.numeric(dim(Parameters3)[2])
nit=as.numeric(dim(Parameters3)[3])
nr=as.numeric(dim(Parameters3)[1])-1
eff_decay<-array(dim=c(7,2))
```

```
if (Scenario==1) {
    DIF4=array(dim=c(1,nit))
    mod="Preliminary disinfection"
    else if (Scenario==2)
    {
        DIF4=array(dim=c(nit,nit))
        mod="Secondary: By-pass rate without dismantling"
    } else if (Scenario==3)
    {
        DIF4=array(dim=c(nit,nit))
        mod="Secondary: By-pass rate with dismantling"
    }
}
```

for(ii in 1:nit){

# print (ii)

eff\_decay<-DIF/10^((Parameters3[nr+1,1,ii])/10)

# Effect of C&D

# Viral loadings after cleansing and disinfection

By\_pass\_preliminary=array(dim=c(7,2))

By\_pass\_secondary\_without\_dismantling=array(dim=c(7,2))

By\_pass\_secondary\_with\_dismantling=array(dim=c(7,2))

```
dimnames(By_pass_preliminary)=list(c("Metal trough","Moving hopper", "Moving chain",
```

```
"Manure belt", "Cross conveyer", "Air drying eqp",
```

"Floor"),

```
c("Manure","Airborne particulate"))
```

```
By_pass_preliminary=(1-Parameters3[-(nr+1),1,ii])*Parameters2+Parameters3[-(nr+1),1,ii]
```

DIF1=eff\_decay\*By\_pass\_preliminary

# Different scenarios

```
if (Scenario==1) {
```

DIF2=DIF1

DIF3=array(dim=c(7,2))

```
dimnames(DIF3)=list(c("Metal trough","Moving hopper", "Moving chain",
```

"Manure belt", "Cross conveyer", "Air drying eqp",

"Floor"),

c("Manure","Airborne particulate"))

```
for (j in 1:2) {
```

```
DIF3[,j]=DIF2[,j]*(Parameters4[,j]+Parameters5[,j])
```

```
}
```

DIF4[1,ii]=sum(DIF3, na.rm=TRUE)

```
} else if (Scenario==2)
```

{

for (jj in 1:nit) {

```
By_pass_secondary_without_dismantling=(1-Parameters3[-(nr+1),2,jj])*
```

Parameters2+Parameters3[-(nr+1),2,jj]

DIF2=DIF1\*By\_pass\_secondary\_without\_dismantling

```
DIF3=array(dim=c(7,2,nit))
```

```
dimnames(DIF3)=list(c("Metal trough","Moving hopper", "Moving chain",
```

```
"Manure belt", "Cross conveyer", "Air drying eqp",
```

"Floor"),

```
c("Manure","Airborne particulate"))
```

for (j in 1:2) {

```
DIF3[,j,jj]=DIF2[,j]*(Parameters4[,j]+Parameters5[,j])
```

}

```
DIF4[jj,ii]=sum(DIF3, na.rm=TRUE)
```

}

```
} else if (Scenario==3)
```

```
{
```

```
for (jjj in 1:nit) {
```

```
By_pass_secondary_with_dismantling=(1-Parameters3[-(nr+1),3,jjj])*
```

```
Parameters2+Parameters3[-(nr+1),3,jjj]
```

```
DIF2=DIF1*By_pass_secondary_with_dismantling
```

```
DIF3=array(dim=c(7,2,nit))
```

```
dimnames(DIF3)=list(c("Metal trough","Moving hopper", "Moving chain",
```

```
"Manure belt", "Cross conveyer", "Air drying eqp",
```

"Floor"),

```
c("Manure","Airborne particulate"))
```

```
for (j in 1:2) {
```

```
DIF3[,j,jjj]=DIF2[,j]*(Parameters4[,j]+Parameters5[,j])
```

```
DIF4[jjj,ii]=sum(DIF3, na.rm=TRUE)
}
}
# Predicted Risk
PI=(DIF4/EID50_oralID50)*CV
return(list(Scenario=mod,
Infect=Source_term,
PredictedRisk=PI,
Infectivity=DIF4,
Exposure_median=median(DIF4),
```

Exposure\_CI\_low=quantile(DIF4, 0.025),

Exposure\_CI\_high=quantile(DIF4, 0.975),

Probability\_CI\_low=quantile(PI, 0.025),

Probability\_Cl\_high=quantile(PI, 0.975),

Probability\_median=median(PI)

))

# }

### Defining parameters ----

# Mass

Mass <- 120

# EID\_50

```
EID50<-c(Cloacal=5011.8723362727,
```

GeneralAirborneLoading=1.7864041909)

# Number of birds

```
Number_Birds <- 129000
```

# Minimum and maximum values used to define the uniform distributiions by-passing

# the "bulk" phase (f\_bypass)

```
min preliminary<-c(0.05, 0.01,0.01,0.10,0.01,0.01,0.01)
max preliminary <- c(0.20, 0.10, 0.10, 0.40, 0.10, 0.10, 0.10)
min secondary without<-c(0.005, 0.005, 0.01, 0.025, 0.005, 0.005, 0.005)
max secondary without<-c(0.02, 0.02,0.04,0.10,0.02,0.02,0.02)
min_secondary_with<-c(0.00025, 0.00025, 0.005, 0.005, 0.00025, 0.00025, 0.005)
max secondary with <- c(0.01, 0.01, 0.02, 0.02, 0.01, 0.01, 0.02)
min<-cbind(min preliminary,min secondary without,min secondary with)
max=cbind(max_preliminary,max_secondary_without,max_secondary_with)
# Defining the time minimum and maximum values of the
# period between depopulation of infected poultry and
# restocking with the new birds
min TbDR<-40
max_TbDR<-90
# Defining Number of simulation ----
ns <- 1000
# p remain
p remain <- 0.001
# Defining number of days of shedding
days_of_shedding <- 1.3
# Defining scenario:
# Preliminary disinfection = 1
# Secondary: By-pass rate without dismantling = 2
# Secondary: By-pass rate with dismantling = 3
scenario <- c(1:3)
### Defining Parameters1 = Fractions of infectivity entering the different streams ----
X=c(0.001, 0.001, 0.001, 0.897,
                                       0.05, 0.05, NA,
  0.01, 0.01, 0.01, 0.2, 0.1, 0.05, 0.62)
```

Parameters1<-array(X, dim=c(7,2))

dimnames(Parameters1)<-list(c("Metal trough","Moving hopper", "Moving chain",

"Manure belt", "Cross conveyer", "Air drying eqp",

"Floor"),

c("Manure","Airborne particulate"))

### Defining Parameters2 = Fractions of infectivity surviving C&D through the different streams ----

Y=c(0.0003162278, 7.94328234724282E-05, 7.94328234724282E-05, 2.51188643150958E-05, 7.94328234724282E-05, 6.30957344480193E-05, 7.94328234724282E-05,

0.0003162278, 7.94328234724282E-05, 7.94328234724282E-05, 2.51188643150958E-05, 7.94328234724282E-05, 6.30957344480193E-05, 7.94328234724282E-05)

Parameters2<-array(Y, dim=c(7,2))

dimnames(Parameters2)<-list(c("Metal trough","Moving hopper", "Moving chain",

"Manure belt", "Cross conveyer", "Air drying eqp",

"Floor"),

c("Manure","Airborne particulate"))

### Defining Parameters4 = Fractions of infectivity inhaled through the different streams --

0.0001, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

Parameters4<-array(K, dim=c(7,2))

dimnames(Parameters4)<-list(c("Metal trough","Moving hopper", "Moving chain",

"Manure belt", "Cross conveyer", "Air drying eqp",

"Floor"),

c("Manure","Airborne particulate"))

### Defining Parameters5 = Fractions of infectivity ingested through the different streams - ---

 $\mathsf{M}{<}{\mathsf{-}}\ \mathsf{c}(0.5, \quad 0.5, \quad 0.5, \quad 0.01, \ 0.01, \ 0.1, \ 0,$ 

0.5, 0.5, 0.5, 0.01, 0.01, 0.1, 0)

Parameters5=array(M, dim=c(7,2))

dimnames(Parameters5)<-list(c("Metal trough","Moving hopper", "Moving chain",

"Manure belt", "Cross conveyer", "Air drying eqp",

"Floor"),

c("Manure","Airborne particulate"))

### Running the model ----

for (s in 1:(length(scenario))) {

results[[s]] <-Risk\_Calc(Mass, EID50, Number\_Birds, p\_remain,

days\_of\_shedding, s, Parameters1, Parameters2,

ns,min,max,min\_TbDR, max\_TbDR, Parameters4, Parameters5,

10^3.4, 0.69)