6,729 research outputs found
Progress in GaAs/CuInSe2 tandem junction solar cells
Much more power is required for spacecraft of the future than current vehicles. To meet this increased demand for power while simultaneously meeting other requirements for launch, deployment, and maneuverability, the development of higher-efficiency, lighter-weight, and more radiation resistant photovoltaic cells is essential. Mechanically stacked tandem junction solar cells based on (AlGaAs)GaAs thin film CLEFT (Cleavage of Lateral Epitaxial Film for Transfer) top cells and CuInSe2(CIS) thin film bottom cells are being developed to meet these power needs. The mechanically stacked tandem configuration is chosen due to its interconnect flexibility allowing more efficient array level performance. It also eliminates cell fabrication processing constraints associated with monolithically integrated multi-junction approaches, thus producing higher cell fabrication yields. The GaAs cell is used as the top cell due to its demonstrated high efficiency, and good radiation resistance. Furthermore, it offers a future potential for bandgap tuning using AlGaAs as the absorber to maximize cell performance. The CuInSe2 cell is used as the bottom cell due to superb radiation resistance, stability, and optimal bandgap value in combination with an AlGaAs top cell. Since both cells are incorporated as thin films, this approach provides a potential for very high specific power. This high specific power (W/kg), combined with high power density (W/sq m) resulting from the high efficiency of this approach, makes these cells ideally suited for various space applications
Baryonic Strangeness and Related Susceptibilities in QCD
The ratios of off-diagonal to diagonal conserved charge susceptibilities
e.g., chi_{BS}/chi_{S}, chi_{QS}/chi_{S}, related to the quark flavor
susceptibilities, have proven to be discerning probes of the flavor carrying
degrees of freedom in hot strongly interacting matter. Various constraining
relations between the different susceptibilities are derived based on the
Gell-Mann-Nishijima formula and the assumption of isospin symmetry. Using
generic models of deconfined matter and results form lattice QCD, it is
demonstrated that the flavor carrying degrees of freedom at a temperature above
1.5T_c are quark-like quasiparticles. A new observable related by isospin
symmetry to C_{BS} = -3chi_{BS}/chi_{S} and equal to it in the baryon free
regime is identified. This new observable, which is blind to neutral and
non-strange particles, carries the potential of being measured in relativistic
heavy-ion collisions.Comment: 12 pages, 5 figures, RevTex
Human decision making anticipates future performance in motor learning.
It is well-established that people can factor into account the distribution of their errors in motor performance so as to optimize reward. Here we asked whether, in the context of motor learning where errors decrease across trials, people take into account their future, improved performance so as to make optimal decisions to maximize reward. One group of participants performed a virtual throwing task in which, periodically, they were given the opportunity to select from a set of smaller targets of increasing value. A second group of participants performed a reaching task under a visuomotor rotation in which, after performing a initial set of trials, they selected a reward structure (ratio of points for target hits and misses) for different exploitation horizons (i.e., numbers of trials they might be asked to perform). Because movement errors decreased exponentially across trials in both learning tasks, optimal target selection (task 1) and optimal reward structure selection (task 2) required taking into account future performance. The results from both tasks indicate that people anticipate their future motor performance so as to make decisions that will improve their expected future reward
Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State
We measured the first azimuthal distributions of triple--differential cross
sections of neutrons emitted in heavy-ion collisions, and compared their
maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU)
calculations with a momentum-dependent interaction. The BUU calculations agree
with the triple- and double-differential cross sections for positive rapidity
neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum
azimuthal anisotropy ratio for these free neutrons is insensitive to the size
of the nuclear incompressibility modulus K characterizing the nuclear matter
equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende
A numerical investigation of a piezoelectric surface acoustic wave interaction with a one-dimensional channel
We investigate the propagation of a piezoelectric surface acoustic wave (SAW)
across a GaAs/AlGaAs heterostructure surface, on which there is
fixed a metallic split-gate. Our method is based on a finite element
formulation of the underlying equations of motion, and is performed in
three-dimensions fully incorporating the geometry and material composition of
the substrate and gates. We demonstrate attenuation of the SAW amplitude as a
result of the presence of both mechanical and electrical gates on the surface.
We show that the incorporation of a simple model for the screening by the
two-dimensional electron gas (2DEG), results in a total electric potential
modulation that suggests a mechanism for the capture and release of electrons
by the SAW. Our simulations suggest the absence of any significant turbulence
in the SAW motion which could hamper the operation of SAW based quantum devices
of a more complex geometry.Comment: 8 pages, 8 figure
- …