55 research outputs found

    Age- and Gender-Related Differences in the Geometric Properties and Biomechanical Significance of Intracortical Porosity in the Distal Radius and Tibia

    Get PDF
    Cortical bone contributes the majority of overall bone mass and bears the bulk of axial loads in the peripheral skeleton. Bone metabolic disorders often are manifested by cortical microstructural changes via osteonal remodeling and endocortical trabecularization. The goal of this study was to characterize intracortical porosity in a cross-sectional patient cohort using novel quantitative computational methods applied to high-resolution peripheral quantitative computed tomography (HR-pQCT) images of the distal radius and tibia. The distal radius and tibia of 151 subjects (57 male, 94 female; 47 ± 16 years of age, range 20 to 78 years) were imaged using HR-pQCT. Intracortical porosity (Ct.Po) was calculated as the pore volume normalized by the sum of the pore and cortical bone volume. Micro–finite element analysis (µFE) was used to simulate 1% uniaxial compression for two scenarios per data set: (1) the original structure and (2) the structure with intracortical porosity artificially occluded. Differential biomechanical indices for stiffness (ΔK), modulus (ΔE), failure load (ΔF), and cortical load fraction (ΔCt.LF) were calculated as the difference between original and occluded values. Regression analysis revealed that cortical porosity, as depicted by HR-pQCT, exhibited moderate but significant age-related dependence for both male and female cohorts (radius ρ = 0.7; tibia ρ = 0.5; p < .001). In contrast, standard cortical metrics (Ct.Th, Ct.Ar, and Ct.vBMD) were more weakly correlated or not significantly correlated with age in this population. Furthermore, differential µFE analysis revealed that the biomechanical deficit (ΔK) associated with cortical porosity was significantly higher for postmenopausal women than for premenopausal women (p < .001). Finally, porosity-related measures provided the only significant decade-wise discrimination in the radius for females in their fifties versus females in their sixties (p < .01). Several important conclusions can be drawn from these results. Age-related differences in cortical porosity, as detected by HR-pQCT, are more pronounced than differences in standard cortical metrics. The biomechanical significance of these structural differences increases with age for men and women and provides discriminatory information for menopause-related bone quality effects. © 2010 American Society for Bone and Mineral Research

    In Vivo Evaluation of the Presence of Bone Marrow in Cortical Porosity in Postmenopausal Osteopenic Women

    Get PDF
    This is the first observational study examining cortical porosity in vivo in postmenopausal osteopenic women and to incorporate data from two different imaging modalities to further examine the nature of cortical porosity. The goal of this study was to combine high-resolution peripheral computed tomography (HR-pQCT) images, which contain high spatial resolution information of the cortical structure, and magnetic resonance (MR) images, which allow the visualization of soft tissues such as bone marrow, to observe the amount of cortical porosity that contains bone marrow in postmenopausal osteopenic women. The radius of 49 and the tibia of 51 postmenopausal osteopenic women (age 56 ± 3.7) were scanned using both HR-pQCT and MR imaging. A normalized mutual information registration algorithm was used to obtain a three-dimensional rigid transform which aligned the MR image to the HR-pQCT image. The aligned images allowed for the visualization of bone marrow in cortical pores. From the HR-pQCT image, the percent cortical porosity, the number of cortical pores, and the size of each cortical pore was determined. By overlaying the aligned MR and HR-pQCT images, the percent of cortical pores containing marrow, the number of cortical pores containing marrow, and the size of each cortical pore containing marrow were measured. While the amount of cortical porosity did not vary greatly between subjects, the type of cortical pore, containing marrow vs. not containing marrow, varied highly between subjects. The results suggest that cortical pore spaces contain components of varying composition, and that there may be more than one mechanism for the development of cortical porosity

    FES-rowing attenuates bone loss following spinal cord injury as assessed by HR-pQCT

    No full text
    Neurologically motor complete spinal cord injury (SCI) presents a unique model of bone loss whereby specific regional sites are exposed to a complete loss of voluntary muscle-induced skeletal loading against gravity. This results in a high rate of bone loss, especially in the lower limbs where trabecular bone mass decreases by ~50-60% and cortical bone mass decreases by 25-34% before the rate of bone loss slows. These SCI-induced losses that are likely superimposed on continual age-related bone losses, increase the risk of low-impact fragility fracture. The fracture incidence 20 years post SCI is reported to be 4.6% per year. An intervention that effectively prevents, attenuates, or reverses bone loss is therefore highly desirable. We present a case study of an individual with chronic complete SCI, where bone loss has been attenuated following long-term functional electrical stimulation (FES)-rowing training. In this case study, we characterize the ultradistal tibia and ultradistal radius of the FES-rower with chronic complete SCI using high-resolution-peripheral quantitative computed tomography. These data are compared with a group of FES-untrained individuals with chronic complete SCI and to a normative non-SCI cohort. The evidence suggests, albeit from a single individual, that long-term FES-rowing training can attenuate bone loss secondary to chronic complete SCI. Indeed, key FES-rower's bone metrics for the ultradistal tibia more closely resemble normative age-matched values, which may have clinical significance since the majority of fragility fractures in chronic SCI occur in the lower extremities

    Effect of Intraspecimen Spatial Variation in Tissue Mineral Density on the Apparent Stiffness of Trabecular Bone

    No full text
    This study investigated the effects of intraspecimen variations in tissue mineral density(TMD) on the apparent-level stiffness of human trabecular bone. High-resolution finite element (FE) models were created for each of 12 human trabecular bone specimens,using both microcomputed tomography (lCT) and “gold-standard” synchrotron radiation lCT (SRlCT) data. Our results confirm that incorporating TMD spatial variation reduces the calculated apparent stiffness compared to homogeneous TMD models. This effect exists for both lCT- and SRlCT-based FE models, but is exaggerated in lCT based models. This study provides a direct comparison of lCT to SRlCT data and is thereby able to conclude that the influence of including TMD heterogeneity is overestimated in lCT-based models

    Effect of Intraspecimen Spatial Variation in Tissue Mineral Density on the Apparent Stiffness of Trabecular Bone

    No full text
    This study investigated the effects of intraspecimen variations in tissue mineral density (TMD) on the apparent-level stiffness of human trabecular bone. High-resolution finite element (FE) models were created for each of 12 human trabecular bone specimens, using both microcomputed tomography (μCT) and “gold-standard” synchrotron radiation μCT (SRμCT) data. Our results confirm that incorporating TMD spatial variation reduces the calculated apparent stiffness compared to homogeneous TMD models. This effect exists for both μCT- and SRμCT-based FE models, but is exaggerated in μCT-based models. This study provides a direct comparison of μCT to SRμCT data and is thereby able to conclude that the influence of including TMD heterogeneity is overestimated in μCT-based models

    Distinct Tissue Mineral Density in Plate‐ and Rod‐like Trabeculae of Human Trabecular Bone

    No full text
    Trabecular bone quality includes both microstructural and intrinsic tissue mineralization properties. However, the tissue mineralization in individual trabeculae of different trabecular types and orientations has not yet been investigated. The aim of this study was to develop an individual trabecula mineralization (ITM) analysis technique to determine tissue mineral density (TMD) distributions in plate- and rod-like trabeculae, respectively, and to compare the TMD of trabeculae along various orientations in μCT images of trabecular bone samples from the femoral neck, greater trochanter, and proximal tibia. ITM analyses indicated that trabecular plates, on average, had significantly higher TMD than trabecular rods. In addition, the distribution of TMD in trabecular plates depended on trabecular orientation with the lowest TMD in longitudinal plates and the highest TMD in transverse plates. Conversely, there was a relatively uniform distribution of TMD among trabecular rods, with respect to trabecular orientation. Further analyses of TMD distribution revealed that trabecular plates had higher mean and peak TMD, whereas trabecular rods had a wider TMD distribution and a larger portion of low mineralized trabeculae. Comparison of apparent Young's moduli derived from micro finite element models with and without heterogeneous TMD demonstrated that heterogeneous TMD in trabecular plates had a significant influence on the elastic mechanical property of trabecular bone. In conclusion, this study revealed differences in TMD between plate and rod-like trabeculae and among various trabecular orientations. The observation of less mineralized longitudinal trabecular plates suggests interesting implications of these load-bearing plates in bone remodeling. The newly developed ITM analysis can be a valuable technique to assess the influence of metabolic bone diseases and their pharmaceutical treatments on not only microstructure of trabecular bone, but also the microarchitectural heterogeneity of tissue mineralization
    corecore