5,554 research outputs found

    Astrophysical significance of the anisotropic kinetic alpha effect

    Get PDF
    The generation of large scale flows by the anisotropic kinetic alpha (AKA) effect is investigated in simulations with a suitable time-dependent space- and time-periodic anisotropic forcing lacking parity invariance. The forcing pattern moves relative to the fluid, which leads to a breaking of the Galilean invariance as required for the AKA effect to exist. The AKA effect is found to produce a clear large scale flow pattern when the Reynolds number, R, is small as only a few modes are excited in linear theory. In this case the non-vanishing components of the AKA tensor are dynamically independent of the Reynolds number. For larger values of R, many more modes are excited and the components of the AKA tensor are found to decrease rapidly with increasing value of R. However, once there is a magnetic field (imposed and of sufficient strength, or dynamo-generated and saturated) the field begins to suppress the AKA effect, regardless of the value of R. It is argued that the AKA effect is unlikely to be astrophysically significant unless the magnetic field is weak and R is small.Comment: 8 pages, 10 figures, submitted to A&

    On the Structure of the Magnetic Field in a Kinematic ABC Flow Dynamo

    Full text link
    The kinematic induction equation of MHD is solved numerically in the case of the normal ``111'' ABC flow using a general staggered mesh method. Careful 3-D visualizations of the topology of the magnetic field reveal that previous conclusions about the modes of operation of this type of kinematic dynamo must be revised. The two known windows of dynamo action at low and high magnetic Reynolds number, correspond to two distinct modes, both relying crucially on the replenishing of the magnetic field near a discontinuity at the beta-type stagnation points in the flow. One of these modes display double magnetic structures that were previously found only to obscure the physics of the dynamo: They turn out, however, to play an important part in the process of amplifying the magnetic field. Invariant properties of the mode in the second magnetic Reynolds number window support the case for the normal ABC flow as a fast dynamo.Comment: Associated webpage, see http://www.astro.su.se/~dorch/dynamo

    The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence

    Full text link
    A numerical model of isotropic homogeneous turbulence with helical forcing is investigated. The resulting flow, which is essentially the prototype of the alpha^2 dynamo of mean-field dynamo theory, produces strong dynamo action with an additional large scale field on the scale of the box (at wavenumber k=1; forcing is at k=5). This large scale field is nearly force-free and exceeds the equipartition value. As the magnetic Reynolds number R_m increases, the saturation field strength and the growth rate of the dynamo increase. However, the time it takes to built up the large scale field from equipartition to its final super-equipartition value increases with magnetic Reynolds number. The large scale field generation can be identified as being due to nonlocal interactions originating from the forcing scale, which is characteristic of the alpha-effect. Both alpha and turbulent magnetic diffusivity eta_t are determined simultaneously using numerical experiments where the mean-field is modified artificially. Both quantities are quenched in a R_m-dependent fashion. The evolution of the energy of the mean field matches that predicted by an alpha^2 dynamo model with similar alpha and eta_t quenchings. For this model an analytic solution is given which matches the results of the simulations. The simulations are numerically robust in that the shape of the spectrum at large scales is unchanged when changing the resolution from 30^3 to 120^3 meshpoints, or when increasing the magnetic Prandtl number (viscosity/magnetic diffusivity) from 1 to 100. Increasing the forcing wavenumber to 30 (i.e. increasing the scale separation) makes the inverse cascade effect more pronounced, although it remains otherwise qualitatively unchanged.Comment: 21 pages, 26 figures, ApJ (accepted

    Do stronger school smoking policies make a difference? Analysis of the health behaviour in school-aged children survey

    Get PDF
    Background: Associations of the strength of school smoking policies with cigarette, e-cigarette and cannabis use in Wales were examined. Methods: Nationally representative cross-sectional survey of pupils aged 11–16 years (N=7376) in Wales. Senior management team members from 67 schools completed questionnaires about school smoking policies, substance use education and tobacco cessation initiatives. Multi-level, logistic regression analyses investigated self-reported cigarette, e-cigarette and cannabis use, for all students and those aged 15–16 years. Results: Prevalence of current smoking, e-cigarette use and cannabis use in the past month were 5.3%, 11.5% and 2.9%, respectively. Of schools that provided details about smoking policies (66/67), 39.4% were strong (written policy applied to everyone in all locations), 43.9% were moderate (written policy not applied to everyone in all locations) and 16.7% had no written policy. There was no evidence of an association of school smoking policies with pupils’ tobacco or e-cigarette use. However, students from schools with a moderate policy [OR = 0.47; 95% (confidence interval) CI: 0.26–0.84] were less likely to have used cannabis in the past month compared to schools with no written policy. This trend was stronger for students aged 15–16 years (moderate policy: OR = 0.42; 95% CI: 0.22–0.80; strong policy: OR = 0.45; 95% CI: 0.23–0.87). Conclusions: School smoking policies may exert less influence on young people’s smoking behaviours than they did during times of higher adolescent smoking prevalence. Longitudinal studies are needed to examine the potential influence of school smoking policies on cannabis use and mechanisms explaining this associatio

    Protocell Communication Through the Eyes of Synthetic Organic Chemists

    Get PDF
    The bottom-up fabrication of synthetic cells (protocells) from molecules and materials, is a major challenge of modern chemistry. A significant breakthrough has been the engineering of protocells capable of chemical communication using bio- derived molecules and ex situ stabilised cell machineries. These, however, suffer from short shelf-lives, high costs, and require mild aqueous conditions. In this Concept Article we analyse the chemistry at the heart of protocell communication to highlight new opportunities for synthetic chemists in protocell engineer- ing. Specifically, we (i) categorise the main bio-derived chemical communication machineries in enzyme cascades, DNA strand displacement, and gene-mediated communication; (ii) review the chemistries of these signal transduction machineries; and (iii) introduce new types of bio-inspired, fully synthetic artificial enzymes to replace their natural counterparts. Developing protocells that incorporate synthetic analogues of bio-derived signal transduction machineries will improve the robustness, stability, and versatility of protocells, and broaden their applications to highly strategic fields such as photocatalysis and fine chemicals production

    Lagrangian analysis of alignment dynamics for isentropic compressible magnetohydrodynamics

    Full text link
    After a review of the isentropic compressible magnetohydrodynamics (ICMHD) equations, a quaternionic framework for studying the alignment dynamics of a general fluid flow is explained and applied to the ICMHD equations.Comment: 12 pages, 2 figures, submitted to a Focus Issue of New Journal of Physics on "Magnetohydrodynamics and the Dynamo Problem" J-F Pinton, A Pouquet, E Dormy and S Cowley, editor

    DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling

    Get PDF
    DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates singlestranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes—the fundamental unit of chromatin—influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision
    • …
    corecore