313 research outputs found

    Deciphering interplay between Salmonella invasion effectors

    Get PDF
    Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction

    Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK

    Get PDF
    Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg)7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy

    A Model of Salmonella Colitis with Features of Diarrhea in SLC11A1 Wild-Type Mice

    Get PDF
    Background: Mice do not get diarrhea when orally infected with S. enterica, but pre-treatment with oral aminoglycosides makes them susceptible to Salmonella colitis. However, genetically susceptible ItyS mice (Nramp1 G169D allele) die from systemic infection before they develop diarrhea, so a new model is needed to study the pathogenesis of diarrhea. We pretreated ItyR mice (Nramp1 G169) with oral kanamycin prior to infecting them with virulent S. Typhimurium strain 14028s in order to study Salmonella-induced diarrhea. We used both a visual scoring system and the measurement of fecal water content to measure diarrhea. BALB/c.D2 Nramp1 congenic started losing weight 5 days post-infection and they began to die from colitis 10–14 days after infection. A SPI-1 (invA) mutant caused cecal, but not colonic inflammation and did not cause diarrhea. A phoP- mutant did not cause manifestations of diarrhea in either normal or NADPHdeficient (gp91 phox) mice. However, strain 14028s caused severe colitis and diarrhea in gp91 phox-deficient mice on an ItyR background. pmr A and F mutants, which are less virulent in orally infected BALB/c mice, were fully virulent in this model of colitis. Conclusions: S. enterica must be able to invade the colonic epithelium and to persist in the colon in order to cause colitis with manifestations of diarrhea. The NADPH oxidase is not required for diarrhea in Salmonella colitis. Furthermore,

    Biochemical characterisation of an α1,4 galactosyltransferase from Neisseria weaveri for the synthesis of α1,4-linked galactosides

    Get PDF
    The human cell surface trisaccharide motifs globotriose and P1 antigen play key roles in infections by pathogenic bacteria, which makes them important synthetic targets as antibacterial agents. Enzymatic strategies to install the terminal α1,4-galactosidic linkage are very attractive but have only been demonstrated for a limited set of analogues. Herein, a new bacterial α1,4 galactosyltransferase from N. weaveri was cloned and produced recombinantly in E. coli BL21 (DE3) cells, followed by investigation of its substrate specificity. We demonstrate that the enzyme can tolerate galactosamine (GalN) and also 6-deoxygalactose and 6-deoxy-6-fluorogalactose as donors, and lactose and N-acetyllactosamine as acceptors, leading directly to analogues of Gb3 and P1 that are valuable chemical probes and showcase how biocatalysis can provide fast access to a number of unnatural carbohydrate analogues

    Transcriptional Priming of Salmonella Pathogenicity Island-2 Precedes Cellular Invasion

    Get PDF
    Invasive salmonellosis caused by Salmonella enterica involves an enteric stage of infection where the bacteria colonize mucosal epithelial cells, followed by systemic infection with intracellular replication in immune cells. The type III secretion system encoded in Salmonella Pathogenicity Island (SPI)-2 is essential for intracellular replication and the regulators governing high-level expression of SPI-2 genes within the macrophage phagosome and in inducing media thought to mimic this environment have been well characterized. However, low-level expression of SPI-2 genes is detectable in media thought to mimic the extracellular environment suggesting that additional regulatory pathways are involved in SPI-2 gene expression prior to cellular invasion. The regulators involved in this activity are not known and the extracellular transcriptional activity of the entire SPI-2 island in vivo has not been studied. We show that low-level, SsrB-independent promoter activity for the ssrA-ssrB two-component regulatory system and the ssaG structural operon encoded in SPI-2 is dependent on transcriptional input by OmpR and Fis under non-inducing conditions. Monitoring the activity of all SPI-2 promoters in real-time following oral infection of mice revealed invasion-independent transcriptional activity of the SPI2 T3SS in the lumen of the gut, which we suggest is a priming activity with functional relevance for the subsequent intracellular host-pathogen interaction

    Active Suppression of Early Immune Response in Tobacco by the Human Pathogen Salmonella Typhimurium

    Get PDF
    The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants

    Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila

    Get PDF
    Legionella pneumophila is a bacterial pathogen that utilises a Type IV secretion (T4S) system to inject effector proteins into human macrophages. Essential to the recruitment and delivery of effectors to the T4S machinery is the membrane-embedded T4 coupling complex (T4CC). Here, we purify an intact T4CC from the Legionella membrane. It contains the DotL ATPase, the DotM and DotN proteins, the chaperone module IcmSW, and two previously uncharacterised proteins, DotY and DotZ. The atomic resolution structure reveals a DotLMNYZ hetero-pentameric core from which the flexible IcmSW module protrudes. Six of these hetero-pentameric complexes may assemble into a 1.6-MDa hexameric nanomachine, forming an inner membrane channel for effectors to pass through. Analysis of multiple cryo EM maps, further modelling and mutagenesis provide working models for the mechanism for binding and delivery of two essential classes of Legionella effectors, depending on IcmSW or DotM, respectively

    Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group

    Get PDF
    BACKGROUND: The District of Columbia (DC) Department of Health, under a grant from the US Centers for Disease Control and Prevention, established an Environmental Public Health Tracking Program. As part of this program, the goals of this contextual pilot study are to quantify short-term associations between daily pediatric emergency department (ED) visits and admissions for asthma exacerbations with ozone and particulate concentrations, and broader associations with socio-economic status and age group. METHODS: Data included daily counts of de-identified asthma-related pediatric ED visits for DC residents and daily ozone and particulate concentrations during 2001–2004. Daily temperature, mold, and pollen measurements were also obtained. After a cubic spline was applied to control for long-term seasonal trends in the ED data, a Poisson regression analysis was applied to the time series of daily counts for selected age groups. RESULTS: Associations between pediatric asthma ED visits and outdoor ozone concentrations were significant and strongest for the 5–12 year-old age group, for which a 0.01-ppm increase in ozone concentration indicated a mean 3.2% increase in daily ED visits and a mean 8.3% increase in daily ED admissions. However, the 1–4 yr old age group had the highest rate of asthma-related ED visits. For 1–17 yr olds, the rates of both asthma-related ED visits and admissions increased logarithmically with the percentage of children living below the poverty threshold, slowing when this percentage exceeded 30%. CONCLUSION: Significant associations were found between ozone concentrations and asthma-related ED visits, especially for 5–12 year olds. The result that the most significant ozone associations were not seen in the age group (1–4 yrs) with the highest rate of asthma-related ED visits may be related to the clinical difficulty in accurately diagnosing asthma among this age group. We observed real increases in relative risk of asthma ED visits for children living in higher poverty zip codes versus other zip codes, as well as similar logarithmic relationships for visits and admissions, which implies ED over-utilization may not be a factor. These results could suggest designs for future epidemiological studies that include more information on individual exposures and other risk factors

    Characterization of the Promoter, MxiE Box and 5′ UTR of Genes Controlled by the Activity of the Type III Secretion Apparatus in Shigella flexneri

    Get PDF
    Activation of the type III secretion apparatus (T3SA) of Shigella flexneri, upon contact of the bacteria with host cells, and its deregulation, as in ipaB mutants, specifically increases transcription of a set of effector-encoding genes controlled by MxiE, an activator of the AraC family, and IpgC, the chaperone of the IpaB and IpaC translocators. Thirteen genes carried by the virulence plasmid (ospB, ospC1, ospD2, ospD3, ospE1, ospE2, ospF, ospG, virA, ipaH1.4, ipaH4.5, ipaH7.8 and ipaH9.8) and five genes carried by the chromosome (ipaHa-e) are regulated by the T3SA activity. A conserved 17-bp MxiE box is present 5′ of most of these genes. To characterize the promoter activity of these MxiE box-containing regions, similar ∼67-bp DNA fragments encompassing the MxiE box of 14 MxiE-regulated genes were cloned 5′ of lacZ in a promoter probe plasmid; β-galactosidase activity detected in wild-type and ipaB strains harboring these plasmids indicated that most MxiE box-carrying regions contain a promoter regulated by the T3SA activity and that the relative strengths of these promoters cover an eight-fold range. The various MxiE boxes exhibiting up to three differences as compared to the MxiE box consensus sequence were introduced into the ipaH9.8 promoter without affecting its activity, suggesting that they are equally efficient in promoter activation. In contrast, all nucleotides conserved among MxiE boxes were found to be involved in MxiE-dependent promoter activity. In addition, we present evidence that the 5′ UTRs of four MxiE-regulated genes enhance expression of the downstream gene, presumably by preventing degradation of the mRNA, and the 5′ UTRs of two other genes carry an ancillary promoter
    • …
    corecore